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Summary: Quantum chemical calculations were performed for gas and water phases using the 

DFT/B3LYP/6-311G(d,p) basis set to determine some molecular properties of 2-amino-6-

arylsulfonylbenzonitrile derivatives (1-61). The quantum chemical properties of these 

compounds such as EHOMO (highest occupied molecular orbital energy), ELUMO (lowest 

unoccupied molecular orbital energy), HOMO-LUMO energy gap (∆E), ionization potential 

(I), chemical hardness (η) and softness (σ), etc. values were calculated and the results were 

discussed. This research aims to construct the relationship between HIV-reverse transcriptase 

inhibitory activity (pIC50) values and classical-quantum descriptors (attributes) of 61 

compounds. The values of the attributes are extracted by utilizing B3LYP/6-311G(d,p) method. 

This endeavour leads to different statistical models since the data contain both nonlinearity and 

clustered structure. In this study, 2-amino-6-arylsulfonylbenzonitrile derivatives (1-61) were 

classified into three subsets based on the atom or group attached at the X position: Subset S 

(compounds 1-19), Subset SO (compounds 20-32), and Subset SO₂ (compounds 33-61). Then 

each subgroup is split into more statistically homogeneous subsets using statistical models 

suggesting that the ratio denoted by 
∆𝐸

𝐼
 is the most significant variable that accounts for pIC50 

for both groups of S and SO2 with 95 and 90 percent coefficients of determination, respectively. 

On the other hand, for the group SO, we have a more complicated significant variable that 

accounts for pIC50, which is 
𝐼+𝐷𝑀

𝐸𝑁∗𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑝ℎ𝑖𝑙𝑦
.  

Moreover, In the context of 2-amino-6-arylsulfonylbenzonitrile derivatives, compounds 2, 24, 

and 50 for gas phase, and compounds 15, 30, and 50 for water phase exhibit higher HOMO 
energies and smaller ΔE values compared to other molecules in the series. This suggests that, 

according to the ΔE values, these compounds have a higher tendency to donate electrons and 
have a more effective reactivity than the other compounds in the series. 

 

Keywords: 2-Amino-6-arylsulfonylbenzonitrile derivatives; DFT; Quantum chemical calculations; Statistical 

analysis. 
 
Introduction 
 

Human Immunodeficiency Virus (HIV) 

damages cells that help the body fight infection, making 

people more vulnerable to other infections and diseases 

[1]. HIV is divided into two subtypes: HIV-1 and HIV-2. 

While these are quite similar in their replication 

mechanisms and transmission routes, HIV-1 infections 

have been found to progress more rapidly than HIV-2 

infections [2, 3]. HIV-1 is the primary cause of AIDS, 

which poses a serious threat to public health worldwide 

[1, 2, 4]. It is estimated that 39.9 million people 

worldwide will be living with HIV in 2023. Of these, 38.6 

million were adults over the age of 15, and 1.4 million 

were children under the age of 15. 53% of these people 

are women and girls. Additionally, an estimated 630,000 

people worldwide will die from AIDS in 2023. Once HIV 

enters the human body, you have HIV for life. Although 

the treatments used to treat HIV do not eliminate HIV in 

the blood, they can reduce it to very low levels where a 

person can live a healthy life [1]. 
 

Various series of compounds are being studied 

as inhibitors against HIV. One of these series is the 2-

amino-6-arylsulfonylbenzonitrile derivatives reported by 

Chan et al. [5]. Studies are showing that 2-amino-6-

arylsulfonylbenzonitrile derivatives are used as anti-

HIV-1 activity [3, 5-9]. Roy and Leonard studied the anti-

HIV-1 activity of 2-amino-6-arylsulfonylbenzonitriles 
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and their thiol and sulfinyl derivatives using their binding 

affinities, physicochemical and quantum chemical 

parameters using multiple regression techniques with 

factor analysis [6]. However, these studies lacked a 

comprehensive quantum-chemical and statistical 

analysis of the electronic properties governing their 

inhibitory activity. Our work bridges this gap by 

employing DFT calculations and advanced statistical 

modelling to correlate quantum descriptors with pIC50 

values, providing a deeper understanding of the structure-

activity relationship (SAR) for these compounds. Hu et 

al. performed molecular modelling of the same series 

using comparative molecular field analysis (CoMFA) 

and comparative molecular similarity index analysis 

(CoMSIA) approaches to determine the most probable 

binding mode and reliable conformations [7]. 
 

Quantitative Structure-Activity Relationship 

(QSAR) is a method that examines the relationship 

between various physical parameters and the biological 

activities of compounds. QSAR methods have been 

successfully used for the prediction of the activities of 

various drugs and drug-like compounds for a long time 

and have made great contributions to computer-aided 

drug design. QSAR is based on the approach that changes 

in the structure of compounds are associated with 

changes in their molecular properties. For this purpose, 

three-dimensional QSAR (3D-QSAR), CoMFA and 

CoMSIA models are widely used in studies together with 

statistical approaches such as Multiple Linear Regression 

(MLR), Partial Least Squares (PLS) and Artificial Neural 

Networks (ANN) [10-15]. In this study, 2-amino-6-

arylsulfonylbenzonitrile and their thiol and sulfinyl 

derivatives (1–61) [9] were examined into three subsets 

based on the substituent at the X position: Subset S 

(benzonitrile derivatives): Compounds 1–19, Subset SO 

(thiol derivatives): Compounds 20–32, Subset SO₂ 

(sulfinyl derivatives): Compounds 33–61 (Table-1). To 

ensure the robustness and predictive capability of our 

models, we have considered the importance of external 

validation. While our internal validation using 5-fold 

cross-validation yielded high accuracy (91.8%), future 

studies would benefit from applying these models to an 

independent dataset to confirm their predictive power, as 

emphasized in QSAR best practices [16, 17]. 
 

The molecules were optimized using the 

Gaussian 09 (revision A.02 [18]) program with the 

DFT/B3LYP/6-311G(d,p) basis set. Quantum chemical 

parameters such as; the energy of EHOMO (the highest 

occupied molecular orbital energy), ELUMO (the energy of 

the lowest unoccupied molecular orbital energy), 

HOMO-LUMO energy gap (ΔE), ionization potential (I), 

chemical hardness (ղ) and softness (), electronegativity 

() for gas and water phases were calculated, and the 

relationship between the activity and stability of the 

molecules of these results were discussed. Recently, the 

optimization of the molecules by using different basic 

sets and the discussion of the results have been widely 

used [19-36]. In addition, the relationship between the 

structures of the molecules and their reactivity, pIC50 

values, was tried to be explained with the help of QSAR 

[37]. Also, statistical analysis of those 61 molecules is 

conducted to explain relations between pIC50 and 

quaquantum descriptor variables. The results suggest that 

intrinsically nonlinear relations in 3 statistically verified 

(R2=0.92) subgroups exist. Besides, each subgroup is 

split into statistically verified subsets that contain 

molecules, which brings a new perspective to 

comprehending relations between pIC50 quantum 

descriptor variables. Instead of having a single set of 

descriptor variables accounting for relation, a constructed 

variable containing a ratio of combination of descriptor 

variables is found. 
 

Parameters such as HOMO-LUMO enrgy gap, 

electronegativity and dipole moment, which are 

important in drug interactions, also affect the adsorption 

behavior of molecules on metal surfaces in corrosion 

inhibition. Drugs and corrosion inhibitors generally 

follow similar adsorption mechanisms, forming 

protective layers on surfaces through physical or 

chemical adsorption. Quantum chemical parameters are 

important in understanding interactions in both 

pharmacology and corrosion science. Functional groups 

such as amines, heterocycles, and π-electrons play 

significant roles in these donor-acceptor interactions. 
 

Some authors agree that the drugs can be used 

well as corrosion inhibitors that can be complemented 

positively with a green corrosion inhibitor since most 

drugs and medicines are derived from natural substances 

[38-42]. The fact that the APls molecule contains oxygen, 

nitrogen, and sulfur as an active center and the APls are 

environmentally friendly and important in biological 

reactions supports the use of APls as corrosion inhibitors. 

Biologically active molecules have been reported as good 

corrosion inhibitors. In addition, many expired drugs 

have been reported to be quite effective corrosion 

inhibitors for the preservation of soft steel in an acidic 

environment [43, 44]. 
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Table-1: Chemical structures of investigated 2-amino-6-arylsulfonylbenzonitrile and their thiol and sulfinyl 

derivatives [9]. 

X

CN

NH2

R

 
Comp. Subset X R Ref. Comp. Subset X R Ref. 

1 S S H [9] 32 SO SO 3-OCH3, 5-CF3 [9] 

2 S S 2-OCH3 [9] 33 SO2 SO2 H [9] 

3 S S 3-OCH3 [9] 34 SO2 SO2 2-OCH3 [9] 

4 S S 2-CH3 [9] 35 SO2 SO2 3-OCH3 [9] 

5 S S 3-CH3 [9] 36 SO2 SO2 4-OCH3 [9] 

6 S S 4-CH3 [9] 37 SO2 SO2 2-CH3 [9] 

7 S S 2-Cl [9] 38 SO2 SO2 3-CH3 [9] 

8 S S 3-Cl [9] 39 SO2 SO2 4-CH3 [9] 

9 S S 2-Br [9] 40 SO2 SO2 2-Cl [9] 

10 S S 3-Br [9] 41 SO2 SO2 3-Cl [9] 

11 S S 3-F [9] 42 SO2 SO2 4-Cl [9] 

12 S S 3-CN [9] 43 SO2 SO2 2-Br [9] 

13 S S 4-CN [9] 44 SO2 SO2 3-Br [9] 

14 S S 3-CF3 [9] 45 SO2 SO2 4-Br [9] 

15 S S 3-NH2 [9] 46 SO2 SO2 2-F [9] 

16 S S 3,5-(CH3)2 [9] 47 SO2 SO2 3-F [9] 

17 S S 3-Cl, 5-CH3 [9] 48 SO2 SO2 2-CN [9] 

18 S S 3-OCH3, 5-CH3 [9] 49 SO2 SO2 3-CN [9] 

19 S S 3-OCH3, 5-CF3 [9] 50 SO2 SO2 4-CN [9] 

20 SO SO 2-OCH3 [9] 51 SO2 SO2 3-CF3 [9] 

21 SO SO 3-OCH3 [9] 52 SO2 SO2 2,5-Cl2 [9] 

22 SO SO 3-CH3 [9] 53 SO2 SO2 3,5-Cl2 [9] 

23 SO SO 4-CH3 [9] 54 SO2 SO2 3,5-(CH3)2 [9] 

24 SO SO 2-Br [9] 55 SO2 SO2 3-Br, 5-CH3 [9] 

25 SO SO 4-Br [9] 56 SO2 SO2 3-Cl, 5-CH3 [9] 

26 SO SO 2-CN [9] 57 SO2 SO2 3-OCH3, 5-CH3 [9] 

27 SO SO 3-CN [9] 58 SO2 SO2 3-OCH3, 5-CF3 [9] 

28 SO SO 3-CF3 [9] 59 SO2 SO2 3-OH, 5-CH3 [9] 

29 SO SO 3,5-(CH3)2 [9] 60 SO2 SO2 3-OCH2CH3, 5-CH3 [9] 

30 SO SO 2,5-Cl2 [9] 61 SO2 SO2 3-OCH2CH2CH3, 5-CH3 [9] 

31 SO SO 3-Cl, 5-CH3 [9]      

 

Computational details 

 

Calculations were performed in gas and 

water phases by using B3LYP level and 6-311G(d,p) 

basis set. The Polarized Continuum Model (PCM) 

method in Gaussian 09 [18] includes a solution that 

calculates the energy in the solvent by making the 

electrostatic potential of the reaction field between the 

solvent and the solute consistent. A more recent 

version of Integral Equation Formalism PCM 

(IEFPCM) is used for the water phase calculations.  

 
Quantum chemical parameters related to the 

reactivity and selectivity of molecules can be 

estimated from the HOMO and LUMO energies using 

Koopmans' theorem [45, 46]. These parameters 

(ionization energy (I), HOMO-LUMO energy 

difference (ΔE), electronegativity (χ), chemical 

hardness (η), chemical softness (σ), chemical potential 

() and global electrophilicity ()) were calculated 

using the following equations (1-9). 
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The obtained quantum chemical parameters 

(ionization energy (I), HOMO-LUMO energy 

difference (ΔE), electronegativity (χ), chemical 

hardness (η), chemical softness (σ), chemical potential 

() and global electrophilicity ()) were calculated 

with the help of the following equations (1-9) from 

EHOMO and ELUMO [35, 36, 47-49]. 
 

I = −EHOMO      (1) 

 

A = −ELUMO      (2) 

 

E = ELUMO −EHOMO    (3) 

 

𝜒 = (
𝐼+𝐴

2
)      (4) 

 

Chemical hardness () is an indicator of an 

atom's resistance to charge transfer and is found using 

eq. 5 below [49]:  

 

𝜂 = (
𝐼−𝐴

2
)      (5) 

 

Chemical softness, an indicator of an atom or 

group's ability to accept electrons, is calculated using 

eq. 6 [48]. 

 

𝜎 =
1

𝜂
= − (

2

𝐸𝐻𝑂𝑀𝑂−𝐸𝐿𝑈𝑀𝑂
)   (6) 

 

𝜇 = −𝜒 = (
𝐸𝐻𝑂𝑀𝑂+𝐸𝐿𝑈𝑀𝑂

2
)   (7) 

 

𝜒 = − (
𝐸𝐻𝑂𝑀𝑂+𝐸𝐿𝑈𝑀𝑂

2
)    (8) 

 

The global electrophilicity index () is a 

parameter used to compare the electron-donating 

abilities of molecules [50]. A high value represents a 

good electrophile, and a low value represents a 

nucleophile [35, 36, 51]. This value can be estimated 

using eq. 9.  

 

𝜔 =
𝜒2

2𝜂
      (9) 

 

Results and discussion 

 

Quantum-chemical Calculations 

 

EHOMO, ELUMO, ΔE, I, , , , , , dipole 

moment (DM), Mulliken atomic charges (MAC), 
molecular volume (MV) and the zero-point energies 

(ZPE) values of the investigated 2-amino-6-

arylsulfonylbenzonitrile derivatives (1-61) were 

calculated by using the DFT/B3LYP/6-311G(d,p) 

method for gas and water phases. All results are 

displayed in supp. Figs. S1, S2 and Tables 2-4.  

 

Frontier molecular orbital (FMO) theory tells 

us whether a reaction will occur or not based on the 
presence or absence of interactions between the 

HOMO and LUMO frontier orbitals of reacting 

molecules [52]. Thus, we obtain important 

information about the activity or stability of a 

molecule. Some researchers have suggested that the 

FMO theory is also useful in predicting the interaction 

center of a molecule [53-55]. It can be easily observed 

that the HOMO distribution of the studied compounds 

in the gas phase are mainly around the whole molecule 

in some compounds, except some small groups such 

as nitrile, methyl groups, and around of the aryl groups 

in some compounds such as compounds 37-56 (Fig. 
S1). The electron-rich regions are believed to be more 

active. The presence of heteroatoms and sulfur atoms 

on the tetrazole ring of the molecules studied may lead 

to stronger adsorption. The presence of the nitrogen 

atom to give a strong activity of these molecules. The 

distributions of the LUMO orbitals of the molecules 

are mainly around the 2-amino benzonitrile and sulfur 

groups (Fig. S1). LUMO localization at the 

benzonitrile moiety increased the reactivity of these 

sites by facilitating electron acceptance. The HOMO 

and LUMO charge density distribution of studied 
compounds are depicted in Fig. S1. 

 

Heterocyclic organic compounds containing 

π-systems and heteroatoms such as O, N, and S are 

known to be effective corrosion inhibitors [56]. 

Therefore, the 2-amino-6-arylsulfonylbenzonitrile 

derivatives we examined can also be used as corrosion 

inhibitors. Corrosion inhibition occurs through the 

formation of donor-acceptor surface complexes 

between the vacant d-orbitals of a metal and the π or 

non-bonding electrons of molecules containing 

heteroatoms [57]. According to FMO theory, the 
chemical reactivity of a molecule is a result of the 

interaction of the HOMO and LUMO orbitals of the 

reacting atoms and molecules. HOMO orbitals 

represent a molecule's ability to donate electrons, and 

LUMO orbitals represent its ability to accept 

electrons. A high EHOMO value is necessary for 

reactions with nucleophiles, while a low ELUMO value 

is necessary for reactions with electrophiles [58]. The 

chemical hardness (η) and softness (σ) parameters are 

also widely used to describe the activity and stability 

of chemical species. Chemical hardness (Eq. 5) is half 
the energy gap between EHOMO and ELUMO, and if the 

energy gap is large, it is expressed as hard and if it is 

small, it is expressed as soft [59]. The smaller ΔE and 

higher softness values indicate a molecule’s greater 

reactivity, which mechanistically relates to enhanced 



M. Izzettin Yilmazer et al.,           J.Chem.Soc.Pak., Vol. 48, No. 01, 2026  17 
 

 

electron-donating ability and stronger interaction with 

the HIV reverse transcriptase active site. These 

electronic properties directly influence binding 

affinity and inhibitory efficiency by facilitating charge 

transfer and stabilizing inhibitor-enzyme complexes. 
 

The high EHOMO values as negative for subset 

S were as follows: 13 (-6.493 eV), 12 (-6.469 eV) and 

14 (-6.365 eV) molecules for the gas phase, and 13 (-

6.315 eV), 7 (-6.314 eV) and 9 (-6.312 eV) molecules 

for the solvent phase. The low EHOMO values as 

negative were found for 15, 2 and 18 molecules for the 

gas and solvent phases of subset S. According to the 

results of EHOMO, it can be assumed that molecule 13 is 

the most active so a better reactive and molecule 15 is 

the least active for gas and solvent phases, 

respectively. The less negative HOMO energy is often 
interpreted by a stronger adsorption bond and perhaps 

greater reaction efficiency [55]. According to EHOMO 

results of set 1, three molecules with the highest 

reaction efficiency with nucleophiles can be written 

as: 13 > 12 > 14 for gas phase, and 13 > 7 > 9 for 

solvent phase. Similarly, molecule 27 for gas phase 

and molecule 30 for solvent phase of subset SO, and 

molecule 50 for gas phase and molecule 52 for solvent 

phase of subset SO2 that they were found to be the 

molecules with the most active as nucleophiles. 

Molecule 20 for subset SO and molecule 34 for subset 
SO2 were found to be the most inactive for both gas 

and solvent phases (Tables 2 and 3). 

 

It is important to note that while the Polarized 

Continuum Model (PCM) provides valuable insights 

into solvent effects, continuum models have inherent 

limitations, such as neglecting specific solute-solvent 

interactions. These limitations may influence 

electronic properties such as dipole moment and 

solvation energy, which in turn could affect biological 

relevance. Future studies could incorporate explicit 

solvent molecules or hybrid solvation models to refine 

these predictions [60]. 

 
The ELUMO is an indicator of the molecule’s 

ability to accept electrons. The molecule with a low 

ELUMO value more easily accepts electrons from 

electrophiles, and in this case, the adsorption of the 

molecule on the metal surface will increase and show 

better reaction. The LUMO results of the molecules 

examined can be seen from Tables 2 and 3 for both 

phases. It is known that quantum chemical parameters, 

energy gap, chemical hardness and chemical softness 

are related to the chemical properties of molecules 

[61-65]. Chemical hardness, as proposed by Pearson 

[56], is defined as the resistance of chemical species to 
deformation or polarization of the electron cloud. 

According to the Maximum Hardness Principle 

(MHP) state: “a chemical system tends to arrange 

itself so as to achieve maximum hardness, and 

chemical hardness can be considered as a 

measurement of stability” [66]. The physical 

properties of molecules are largely related to E. A 

high E value indicates the compound's stability and 

low molecular activity. As the E value increases, it 

becomes increasingly difficult for molecules to 

polarize. In this case, it will require more energy to 

excite the compounds. Molecules with smaller energy 

gaps will be more easily polarized and will react more 

readily. [67]. Pearson showed that hard molecules with 

large E values are more stable than soft molecules 

with small E values [68, 69]. The smaller E is often 

related to a stronger adsorption bond and perhaps 

greater reaction efficiency [55].

 

Table-2: The calculated quantum chemical parameters for the gas phase. 
Molecule EHOMO 

(eV) 

ELUMO 

(eV) 

∆E 

(eV) 

I 

(eV) 

η 

(eV) 

σ 

(eV-1) 

µ 

(eV) 

χ 

(eV) 

ω 

(eV) 

DM 

(D) 

MAC 

(e) 

MV 

(cm3/mol) 

ZPE 

(eV) 

1 -6.147 -1.611 4.537 6.147 2.268 0.441 3.879 -3.879 3.317 4.105 -1.799 159.345 -27458.09 

2 -5.680 -1.601 4.079 5.680 2.040 0.490 3.640 -3.640 3.248 2.851 -2.340 166.374 -30574.33 

3 -5.979 -1.576 4.403 5.979 2.202 0.454 3.778 -3.778 3.241 3.913 -2.240 213.097 -30574.37 

4 -6.044 -1.620 4.425 6.044 2.212 0.452 3.832 -3.832 3.319 3.934 -2.062 180.387 -28527.49 

5 -6.116 -1.581 4.535 6.116 2.268 0.441 3.849 -3.849 3.266 3.744 -2.041 172.918 -28527.52 

6 -6.063 -1.567 4.496 6.063 2.248 0.445 3.815 -3.815 3.237 3.947 -2.025 192.219 -28527.52 

7 -6.198 -1.844 4.354 6.198 2.177 0.459 4.021 -4.021 3.714 6.070 -1.842 154.048 -39965.20 

8 -6.301 -1.774 4.527 6.301 2.263 0.442 4.037 -4.037 3.601 6.202 -1.915 190.304 -39965.28 

9 -6.180 -1.840 4.340 6.180 2.170 0.461 4.010 -4.010 3.706 5.895 -1.793 182.293 -97487.94 

10 -6.285 -1.769 4.516 6.285 2.258 0.443 4.027 -4.027 3.591 6.033 -1.837 165.072 -97488.03 

11 -6.139 -1.769 4.370 6.139 2.185 0.458 3.954 -3.954 3.578 5.496 -2.086 138.984 -30159.37 

12 -6.469 -1.923 4.546 6.469 2.273 0.440 4.196 -4.196 3.873 9.000 -1.895 193.314 -29968.75 

13 -6.493 -1.985 4.508 6.493 2.254 0.444 4.239 -4.239 3.987 7.925 -1.848 160.199 -29968.78 

14 -6.365 -1.821 4.544 6.365 2.272 0.440 4.093 -4.093 3.686 7.095 -2.552 203.528 -36631.97 

15 -5.662 -1.508 4.154 5.662 2.077 0.481 3.585 -3.585 3.093 2.524 -2.167 167.778 -28964.43 

16 -6.085 -1.551 4.535 6.085 2.267 0.441 3.818 -3.818 3.214 3.862 -2.293 209.438 -29596.94 

17 -6.249 -1.750 4.499 6.249 2.249 0.445 3.999 -3.999 3.555 6.394 -2.200 197.238 -41034.71 
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18 -5.925 -1.553 4.372 5.925 2.186 0.457 3.739 -3.739 3.198 4.106 -2.501 169.211 -31643.79 

19 -6.276 -1.737 4.539 6.276 2.269 0.441 4.007 -4.007 3.537 2.489 -3.006 219.641 -39748.28 

20 -6.096 -1.590 4.505 6.096 2.253 0.444 3.843 -3.843 3.278 6.480 -2.925 211.553 -32620.10 

21 -6.270 -1.772 4.498 6.270 2.249 0.445 4.021 -4.021 3.595 6.693 -2.810 212.176 -32620.25 

22 -6.379 -1.822 4.557 6.379 2.278 0.439 4.100 -4.100 3.690 6.163 -2.630 177.815 -30573.42 

23 -6.350 -1.801 4.549 6.350 2.274 0.440 4.076 -4.076 3.652 6.538 -2.608 212.961 -30573.41 

24 -6.401 -1.942 4.460 6.401 2.230 0.448 4.171 -4.171 3.902 7.452 -2.343 160.427 -99533.47 

25 -6.528 -1.976 4.552 6.528 2.276 0.439 4.252 -4.252 3.972 6.814 -2.341 177.346 -99533.92 

26 -6.639 -2.103 4.537 6.639 2.268 0.441 4.371 -4.371 4.211 10.267 -2.451 183.289 -32014.27 

27 -6.649 -2.112 4.537 6.649 2.268 0.441 4.380 -4.380 4.229 10.356 -2.468 179.238 -32014.59 

28 -6.573 -2.027 4.546 6.573 2.273 0.440 4.300 -4.300 4.067 8.740 -3.123 204.393 -38677.83 

29 -6.338 -1.795 4.543 6.338 2.271 0.440 4.066 -4.066 3.640 6.394 -2.868 175.938 -31642.85 

30 -6.597 -2.057 4.540 6.597 2.270 0.441 4.327 -4.327 4.125 6.188 -2.461 194.082 -54517.90 

31 -6.493 -1.937 4.557 6.493 2.278 0.439 4.215 -4.215 3.899 8.311 -2.775 195.204 -43080.58 

32 -6.502 -1.951 4.552 6.502 2.276 0.439 4.227 -4.227 3.925 4.693 -3.571 208.850 -41794.15 

33 -6.581 -2.099 4.483 6.581 2.241 0.446 4.340 -4.340 4.202 6.826 -2.829 168.882 -31550.99 

34 -6.409 -1.964 4.445 6.409 2.222 0.450 4.187 -4.187 3.944 7.337 -3.404 185.941 -34667.15 

35 -6.500 -2.025 4.475 6.500 2.237 0.447 4.263 -4.263 4.060 7.236 -3.250 188.360 -34667.26 

36 -6.490 -1.990 4.499 6.490 2.250 0.445 4.240 -4.240 3.995 7.607 -3.282 194.031 -34667.32 

37 -6.585 -2.054 4.531 6.585 2.265 0.441 4.320 -4.320 4.119 6.369 -3.081 198.803 -32620.26 

38 -6.562 -2.068 4.494 6.562 2.247 0.445 4.315 -4.315 4.143 6.637 -3.081 189.716 -32620.44 

39 -6.539 -2.044 4.495 6.539 2.248 0.445 4.292 -4.292 4.098 6.861 -3.062 203.634 -32620.44 

40 -6.634 -2.120 4.514 6.634 2.257 0.443 4.377 -4.377 4.244 7.590 -2.778 206.232 -44057.76 

41 -6.672 -2.238 4.434 6.672 2.217 0.451 4.455 -4.455 4.476 7.623 -2.942 225.269 -44058.14 

42 -6.687 -2.239 4.448 6.687 2.224 0.450 4.463 -4.463 4.479 6.848 -2.842 161.723 -44058.18 

43 -6.644 -2.117 4.526 6.644 2.263 0.442 4.380 -4.380 4.239 7.491 -2.798 220.069 -101580.49 

44 -6.667 -2.229 4.438 6.667 2.219 0.451 4.448 -4.448 4.457 7.506 -2.856 220.403 -101580.88 

45 -6.680 -2.230 4.450 6.680 2.225 0.449 4.455 -4.455 4.459 6.822 -2.775 158.391 -101580.92 

46 -6.596 -2.111 4.485 6.596 2.243 0.446 4.353 -4.353 4.225 7.340 -3.060 169.127 -34252.04 

47 -6.660 -2.217 4.443 6.660 2.221 0.450 4.438 -4.438 4.434 7.453 -3.008 187.406 -34252.28 

48 -6.751 -2.336 4.415 6.751 2.208 0.453 4.543 -4.543 4.675 9.813 -2.893 205.831 -34061.25 

49 -6.788 -2.396 4.393 6.788 2.196 0.455 4.592 -4.592 4.800 9.303 -2.912 195.740 -34061.57 

50 -6.820 -2.589 4.231 6.820 2.116 0.473 4.704 -4.704 5.230 7.839 -2.839 251.207 -34061.59 

51 -6.707 -2.193 4.514 6.707 2.257 0.443 4.450 -4.450 4.387 8.757 -3.498 199.699 -40724.37 

52 -6.721 -2.241 4.480 6.721 2.240 0.446 4.481 -4.481 4.482 6.559 -2.910 218.233 -56564.90 

53 -6.767 -2.377 4.390 6.767 2.195 0.456 4.572 -4.572 4.761 7.094 -3.128 212.277 -56565.26 

54 -6.536 -2.032 4.504 6.536 2.252 0.444 4.284 -4.284 4.074 6.782 -3.332 207.521 -33689.87 

55 -6.635 -2.189 4.446 6.635 2.223 0.450 4.412 -4.412 4.377 7.715 -3.139 245.575 -102650.32 

56 -6.642 -2.198 4.444 6.642 2.222 0.450 4.420 -4.420 4.396 7.838 -3.232 229.079 -45127.58 

57 -6.454 -1.993 4.461 6.454 2.230 0.448 4.223 -4.223 3.999 7.398 -3.513 194.664 -35736.69 

58 -6.657 -2.225 4.432 6.657 2.216 0.451 4.441 -4.441 4.450 6.131 -4.006 234.512 -43841.12 

59 -6.504 -2.028 4.476 6.504 2.238 0.447 4.266 -4.266 4.066 7.654 -3.370 177.601 -34667.76 

60 -6.430 -1.988 4.442 6.430 2.221 0.450 4.209 -4.209 3.988 7.366 -3.731 260.892 -36806.15 

61 -6.428 -1.991 4.437 6.428 2.218 0.451 4.210 -4.210 3.994 7.314 -3.962 224.681 -37875.46 

EHOMO: The energy of the highest occupied molecular orbital, ELUMO: The energy of the lowest unoccupied molecular orbital, ΔE: HOMO-

LUMO energy gap, I: Ionization potential, DM: Dipole moment, MAC: Mulliken atomic charges, : Chemical hardness, : Chemical 

softness, : Electronegativity, : Chemical potential, : Global electrophilicity, MV: Molecular volume, ZPE: The zero-point energies. 

 

Table-3: The calculated quantum chemical parameters for the water phase. 

Molecule EHOMO 

(eV) 

ELUMO 

(eV) 

∆E 

(eV) 

I 

(eV) 

η 

(eV) 

σ 

(eV-1) 

µ 

(eV) 

χ 

(eV) 

ω 

(eV) 

DM 

(D) 

MAC 

(e) 

MV 

(cm3/mol) 

ZPE 

(eV) 

1 -6.202 -1.746 4.456 6.202 2.228 0.449 3.974 -3.974 3.543 6.148 -1.959 176.685 -27458.46 

2 -5.995 -1.760 4.235 5.995 2.117 0.472 3.877 -3.877 3.550 4.768 -2.498 202.808 -30574.78 

3 -6.189 -1.745 4.444 6.189 2.222 0.450 3.967 -3.967 3.542 6.086 -2.412 186.364 -30574.79 

4 -6.176 -1.754 4.422 6.176 2.211 0.452 3.965 -3.965 3.555 5.912 -2.220 139.105 -28527.85 

5 -6.184 -1.737 4.447 6.184 2.224 0.450 3.960 -3.960 3.527 5.618 -2.186 194.152 -28527.88 

6 -6.163 -1.721 4.442 6.163 2.221 0.450 3.942 -3.942 3.498 5.909 -2.173 187.453 -28527.89 

7 -6.314 -1.844 4.471 6.314 2.235 0.447 4.079 -4.079 3.721 8.567 -1.968 147.371 -39965.59 

8 -6.236 -1.780 4.456 6.236 2.228 0.449 4.008 -4.008 3.605 8.901 -2.017 177.848 -39965.66 

9 -6.312 -1.851 4.461 6.312 2.230 0.448 4.082 -4.082 3.735 8.362 -1.926 217.623 -97488.33 



M. Izzettin Yilmazer et al.,           J.Chem.Soc.Pak., Vol. 48, No. 01, 2026  19 
 

 

10 -6.255 -1.799 4.456 6.255 2.228 0.449 4.027 -4.027 3.639 8.671 -1.947 208.640 -97488.41 

11 -6.279 -1.811 4.468 6.279 2.234 0.448 4.045 -4.045 3.662 7.976 -2.206 173.998 -30159.76 

12 -6.283 -1.852 4.431 6.283 2.216 0.451 4.067 -4.067 3.733 12.266 -2.039 214.433 -29969.23 

13 -6.315 -1.859 4.457 6.315 2.228 0.449 4.087 -4.087 3.748 10.687 -2.024 157.750 -29969.27 

14 -6.264 -1.799 4.465 6.264 2.232 0.448 4.031 -4.031 3.640 9.810 -2.648 209.063 -36632.36 

15 -5.821 -1.725 4.095 5.821 2.048 0.488 3.773 -3.773 3.476 4.057 -2.360 181.394 -28964.91 

16 -6.157 -1.722 4.435 6.157 2.217 0.451 3.940 -3.940 3.500 5.806 -2.417 147.868 -29597.31 

17 -6.244 -1.786 4.458 6.244 2.229 0.449 4.015 -4.015 3.616 9.185 -2.302 173.909 -41035.10 

18 -6.155 -1.737 4.417 6.155 2.209 0.453 3.946 -3.946 3.525 6.471 -2.652 213.266 -31644.22 

19 -6.265 -1.797 4.468 6.265 2.234 0.448 4.031 -4.031 3.637 3.808 -3.137 218.112 -39748.70 

20 -6.174 -1.745 4.429 6.174 2.214 0.452 3.960 -3.960 3.540 9.989 -3.114 221.120 -32620.73 

21 -6.346 -1.921 4.425 6.346 2.213 0.452 4.133 -4.133 3.861 9.844 -3.002 210.393 -32620.86 

22 -6.340 -1.914 4.426 6.340 2.213 0.452 4.127 -4.127 3.848 9.062 -2.780 197.156 -30573.96 

23 -6.338 -1.908 4.430 6.338 2.215 0.451 4.123 -4.123 3.837 9.606 -2.771 181.678 -30573.96 

24 -6.343 -2.013 4.330 6.343 2.165 0.462 4.178 -4.178 4.031 8.010 -2.481 170.180 -99534.33 

25 -6.361 -1.960 4.401 6.361 2.201 0.454 4.161 -4.161 3.933 9.791 -2.486 182.310 -99534.46 

26 -6.412 -2.045 4.366 6.412 2.183 0.458 4.229 -4.229 4.095 14.869 -2.629 202.338 -32015.04 

27 -6.386 -1.999 4.387 6.386 2.194 0.456 4.192 -4.192 4.007 14.414 -2.650 206.123 -32015.27 

28 -6.377 -1.983 4.394 6.377 2.197 0.455 4.180 -4.180 3.977 12.320 -3.265 189.851 -38678.41 

29 -6.336 -1.911 4.426 6.336 2.213 0.452 4.123 -4.123 3.842 9.457 -3.010 202.257 -31643.39 

30 -6.439 -2.144 4.295 6.439 2.148 0.466 4.292 -4.292 4.289 9.832 -2.634 223.669 -31551.56 

31 -6.365 -1.964 4.401 6.365 2.201 0.454 4.164 -4.164 3.940 11.998 -2.928 201.538 -43081.15 

32 -6.374 -1.976 4.398 6.374 2.199 0.455 4.175 -4.175 3.964 7.124 -3.721 263.991 -41794.74 

33 -6.439 -2.144 4.295 6.439 2.148 0.466 4.292 -4.292 4.289 9.832 -2.969 223.669 -31551.56 

34 -6.349 -2.069 4.280 6.349 2.140 0.467 4.209 -4.209 4.139 11.278 -3.567 202.026 -34667.79 

35 -6.430 -2.138 4.292 6.430 2.146 0.466 4.284 -4.284 4.276 10.465 -3.425 160.889 -34667.89 

36 -6.410 -2.090 4.320 6.410 2.160 0.463 4.250 -4.250 4.181 10.998 -3.443 231.660 -34667.95 

37 -6.440 -2.086 4.354 6.440 2.177 0.459 4.263 -4.263 4.173 9.234 -3.232 182.892 -32620.81 

38 -6.436 -2.128 4.307 6.436 2.154 0.464 4.282 -4.282 4.257 9.558 -3.212 195.420 -32621.00 

39 -6.424 -2.115 4.309 6.424 2.154 0.464 4.270 -4.270 4.231 10.017 -3.204 174.304 -32621.02 

40 -6.499 -2.194 4.305 6.499 2.153 0.465 4.347 -4.347 4.389 11.871 -2.953 168.550 -44058.42 

41 -6.462 -2.220 4.243 6.462 2.121 0.471 4.341 -4.341 4.442 10.867 -3.071 222.892 -44058.70 

42 -6.454 -2.204 4.250 6.454 2.125 0.471 4.329 -4.329 4.410 9.704 -2.963 225.609 -44058.72 

43 -6.494 -2.188 4.306 6.494 2.153 0.464 4.341 -4.341 4.375 11.619 -2.931 192.840 -101581.15 

44 -6.460 -2.218 4.241 6.460 2.121 0.472 4.339 -4.339 4.439 10.803 -2.980 190.859 -101581.45 

45 -6.451 -2.200 4.251 6.451 2.126 0.470 4.326 -4.326 4.401 9.690 -2.892 174.348 -101581.47 

46 -6.457 -2.160 4.297 6.457 2.148 0.465 4.309 -4.309 4.321 10.831 -3.204 171.029 -34252.66 

47 -6.457 -2.211 4.246 6.457 2.123 0.471 4.334 -4.334 4.424 10.647 -3.130 194.251 -34252.85 

48 -6.496 -2.371 4.126 6.496 2.063 0.485 4.434 -4.434 4.764 14.407 -3.059 215.645 -34062.02 

49 -6.482 -2.288 4.194 6.482 2.097 0.477 4.385 -4.385 4.585 12.891 -3.078 195.449 -34062.24 

50 -6.475 -2.523 3.952 6.475 1.976 0.506 4.499 -4.499 5.122 10.567 -2.988 166.667 -34062.24 

51 -6.490 -2.180 4.310 6.490 2.155 0.464 4.335 -4.335 4.361 12.940 -3.662 224.349 -40725.04 

52 -6.517 -2.241 4.276 6.517 2.138 0.468 4.379 -4.379 4.484 9.873 -3.057 221.600 -56565.52 

53 -6.480 -2.300 4.180 6.480 2.090 0.478 4.390 -4.390 4.611 9.941 -3.254 224.142 -56565.79 

54 -6.427 -2.114 4.313 6.427 2.156 0.464 4.270 -4.270 4.229 9.902 -3.456 209.375 -33690.44 

55 -6.455 -2.201 4.253 6.455 2.127 0.470 4.328 -4.328 4.404 11.162 -3.275 219.178 -102650.90 

56 -6.455 -2.206 4.249 6.455 2.125 0.471 4.330 -4.330 4.413 11.292 -3.371 205.519 -45128.15 

57 -6.424 -2.126 4.298 6.424 2.149 0.465 4.275 -4.275 4.252 10.786 -3.678 167.067 -35737.33 

58 -6.462 -2.237 4.225 6.462 2.113 0.473 4.349 -4.349 4.477 8.872 -4.140 221.526 -43841.74 

59 -6.424 -2.135 4.289 6.424 2.145 0.466 4.280 -4.280 -4.271 11.073 -3.532 185.290 -34668.46 

60 -6.423 -2.126 4.297 6.423 2.148 0.465 4.274 -4.274 4.252 10.778 -3.899 213.718 -36806.79 

61 -6.424 -2.126 4.298 6.424 2.149 0.465 4.275 -4.275 4.252 10.704 -4.128 252.177 -37876.09 

EHOMO: The energy of the highest occupied molecular orbital, ELUMO: The energy of the lowest unoccupied 

molecular orbital, ΔE: HOMO-LUMO energy gap, I: Ionisation potential, DM: Dipole moment, MAC: Mulliken 

atomic charges, ղ: Chemical hardness, : Chemical softness, : Electronegativity, : Chemical potential, ω: 

Global electrophilicity, MV: Molecular volume, ZPE: The zero-point energies. 
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According to E values, the three molecules 

with the highest reaction efficiency ranking for the gas 

phase are 2 (4.079 eV) > 15 (4.154 eV) > 9 (4.340 eV), 

and 15 (4.095 eV) > 2 (4.235 eV) > 18 (4.417 eV) for 

the solvent phase of subset S. Generally, E values in 

the gas phase are lower than the water phase for subset 

S. Therefore, the water phase is expected to be a higher 

reaction stable for subset S than the gas phase. It can 

be seen, from Table 2, that the E values are very close 

to each other for the gas phase. According to these 
results, molecules 2, 15, 9 for the gas phase and 

molecules 15, 2, 18 for the solvent phase are expected 

to act as higher reaction efficiency than other 

molecules due to their lower E values (Tables 2 and 

3). Similarly, molecules 24, 21, 20 for the gas phase 

and 30, 24, 26 for the solvent phase of subset SO, and 

50, 53, 49 for the gas phase and 50, 48, 53 for the 

solvent phase of subset SO2 are expected to act as 

higher reaction efficiency (Tables 2 and 3). To 

summarize, compounds 2, 24 and 50 for gas phase, and 

15, 30 and 50 for water phase showed the smallest ΔE 

values (4.079–4.231 eV for gas phase and 4.095-4.295 

eV for water phase) indicating high reactivity. 
 

A molecule's high ionization potential (I) 

indicates chemical inertness and high stability, while a 

low value indicates a species' high activity [64]. 

According to the I value, the three molecules with the 

highest activation order can be written as: 15 > 2 > 18 

for gas and water phases for subset S. I values in the 

gas phase are lower than the solvent phase for 15, 2 

and 18 molecules. Molecule 15 is more active than 

other molecules for the gas and solvent phases, owing 

to its lowest ionization potential values. 13 is the most 
inactive molecule for the gas and solvent phases of 

subset S, while 20, 21, 29 and 20, 29, 23 are the most 

active molecules respectively for the gas and solvent 

phases for subset SO, and 34, 61, 60 for the gas phase 

and 34, 36, 60 for the solvent phase of subset SO2 

(Tables 2 and 3). 

 

The chemical hardness (η) and softness () 

parameters are also widely used to describe the 

activity and stability of chemical species. Chemical 

hardness (Eq. 5) is half the energy gap between EHOMO 

and ELUMO, and if the energy gap is large, it is 

expressed as hard and if it is small, it is expressed as 
soft [67]. On the basis of the calculated chemical 

hardness and softness values in Tables 2 and 3, the 

order of activity for subset S molecules under 

investigation is: 2 > 15 > 9 for the gas phase and 15 > 

2 > 18 for the solvent phase. The results of subsets 2 

and 3 can be seen in Tables 2 and 3. Active molecules 

have a greater softness value than inactive ones. 

Chemical softness (Eq. 6) is an indicator of 

polarization. Soft molecules can more easily donate 

electrons to an opposite electron-accepting molecule 

or surface [19]. Softness values for subsets S, SO and 

SO2 can be seen in Tables 2 and 3. Molecule 2 for gas 

phase and molecule 15 for the solvent phase are 

expected to have higher activity than other molecules 
for subset S. 

 

Chemical hardness, electronegativity and 

chemical potential are very useful parameters in 

predicting the chemical properties of molecules [70]. 

Electronegativity is also an indicator of a molecule's 

tendency to attract electrons, that is, its electron 

density. Electronegativity measures the ability of 

chemical species to attract electrons and is a useful 

quantity in estimating the activity of molecules [19]. 

In general, a molecule with lower electronegativity 

tends to donate electrons more easily and therefore 
exhibits higher activity than a molecule with higher 

electronegativity [71]. 

 

Compounds with higher activity have a 

higher softness value. Chemical softness is a measure 

of polarizability, and soft molecules are more likely to 

donate electrons to an electron-accepting molecule or 

surface [19]. According to the softness values of 

subsets S, SO and SO2 in Tables 2 and 3, the activity 

ranking is similar as the hardness for all subsets. 

Molecule 2 for gas phase and molecule 15 for the 
solvent phase are expected to have higher activity than 

other molecules for subset S. 

 

The electronegativity values were 

determined as: 15 (-3.585 eV), 2 (-3.640 eV), 18 (-

3.739 eV) for the gas phase and 15 (-3.773 eV), 2 (-

3.877 eV), 16 (-3.940 eV) for the solvent phase of 

subset S, and 20 (-3.843 eV), 21 (-4.021 eV), 29 (-

4.066 eV) for the gas phase and 20 (-3.960 eV), 29 (-

4.123 eV), 23 (-4.123 eV) for the solvent phase of 

subset SO, and 34 (-4.187 eV), 60 (-4.209 eV), 61 (-

4.210 eV) for the gas phase and 34 (-4.209 eV), 36 (-
4.250 eV), 37 (-4.263 eV) for the solvent phase of 

subset SO2. The lower electronegativity values of 

compound 15 suggests higher activity, as compared to 

the other molecules for both phases of subset S, 

compounds 20 and 34 respectively for both phases of 

subsets SO and SO2 (see Tables 2 and 3). 

 

Dipole moment (DM) can be used as an 

indicator of the activity of chemical species. While 

some authors have reported no clear relationship 

between DM and reaction efficiency [62, 63], others 

suggest that reaction efficiency increases with 

increasing dipole moment [72-74]. Some studies also 

emphasize that increasing DM facilitates the electron 

transport process [73, 74]. According to the DM 
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results, the reaction efficiency can be summarized as 

follows for the three molecules with the highest 

efficiency: 12 > 13 > 14 for the gas and solvent phases 

of subset S, 27 > 26 > 28 for the gas phase and 26 > 

27 > 28 for the solvent phase of subset SO, and 48 > 

49 > 51 for the gas phase and 48 > 51 > 49 for the 

solvent phase of subset SO2. 

 

Another parameter to consider is the 

Mulliken atomic charges (MAC), which can give 

valuable information about the reactive behaviour of 

the molecules under study, by summing all the 

negative loads in a molecule [72]. A high MAC value 

means that the reaction activity of the molecule is 

increased [28]. According to the obtained dipole 

moment results, 12, 26 and 48 correspond to the best 

active molecules for the gas and solvent phases of 

subsets S, SO and SO2, respectively (see Tables 2 and 

3).  

 

The molecule with higher the zero-point 

energies (ZPE) is the hardest electron-donating and the 

most stable [75]. According to ZPE results, compound 

10 represents the best reactive in the gas phase and 

compound 9 in the water phase of subset S. The results 

for subsets SO and SO2 can be seen from Table 2 for 

the gas phase and Table 3 for the solvent phase. 

 

Molecular volume (MV) has been found to 

indicate the potential inhibitor coverage on a metal 

surface. A molecule with a larger MV can provide 

better protection on the metal surface because it has a 

larger surface area [76]. The calculated MV values for 

the gas and solvent phases of the investigated 

molecules are given in Tables 2 and 3. 

 

Quantum chemical studies can also provide 

useful information to better understand the structural 

conformation and molecular behaviour of molecules. 

The electrostatic potential (ESP) distributions of a 

compound can be studied more precisely with the DFT 

approach [67]. ESP can describe the electrostatic 

interaction between an atom and a molecule. ESP 

provides information about the nucleophilic and 

electrophilic nature of molecules. ESP is an important 

tool for investigating and studying the reactivity of 

molecules. ESP maps for the series of molecules 

studied are shown in Fig. S2.  

 

Examining Fig. S2, different colors are 

visible in the ESP maps of the molecules. The bluish 

regions in these maps represent the positive region 

where the nucleophilic reaction occurs, and the 

reddish regions represent the negative region where 

the electrophilic reaction occurs. When Fig. S2 is 

examined, it is seen that the electron density around 

the nitrogen and oxygen atoms with negative 

electrostatic potential values of the examined 

molecules increases. Particularly, most of the 

electrophilic reactions take place in the red regions 

where the electron density of nitrogen and oxygen 

atoms is high. These regions featuring maximum 

electronegativity can be observed in Fig. S2. This 

result shows that nitrogen and oxygen atoms in 

molecules will participate more easily in electrophilic 

reactions. 

 

In theoretical studies, electronic charge 

analyses of atoms in molecules provide important 

information. The binding capacity of a molecule is 

related to the electronic charge of the heteroatoms 

within the molecule. It has been observed that as the 

negative charge on the heteroatom increases, binding 

becomes easier [77]. In this study, Mulliken 

population analysis [78] was used to calculate the 

atomic charges of molecules. It can be seen that 

nitrogen and oxygen atoms with electron-rich regions 

have higher Mulliken atomic charges (Tables 2 and 3). 

 

Correlations 

 

We computed correlations between quantum 

descriptor variables and pIC50 values (Table S1) for 

the whole data set (61 compounds). The results are 

summarized in Table S2. All correlation values in bold 

are statistically significant at a 0.05 significance level. 

The values below the diagonal of the Table S2 and the 

other tables are symmetric so we left it blank. Then, 

we calculated correlations between quantum 

descriptor variables and pIC50 for the data subset S 

(Table S3). Afterward, we calculated correlations 

between quantum descriptor variables and pIC50 for 

the data subset SO (Table S4), and finally, we 

calculated correlations between quantum descriptor 

variables and pIC50 for the data subset SO2 (Table S5). 

By doing so, linearity or non-linearity relations 

between attributes and pIC50 values were determined 

to help us select relatively the best models using 

significant attributes. 

 

Statistical analysis for gas phase 

 

To verify this segmentation statistically, we 

conducted a statistical analysis called Linear Support 

Vector Machine (LSVM) using Mat Lab 7.9 running 

5-fold cross-validation with the dependent variable 

pIC50 and 13 descriptor variables, namely, EHOMO, 

ELUMO, E, I, DM, MAC, η, σ, µ, χ, ω, MV and ZPE. 
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The prediction accuracy of the LSVM is 91.8%, which 

is statistically quite high. Fig. 1 exhibits the output of 

the analysis. Each colour represents one subset. In Fig. 

1, each subset is represented by different colours such 

as blue, red, and yellow due to the clustering algorithm 

called Linear Support Vector Machine. The clustering 

accuracy is statistically very high, which is almost 92 

percent. However, some of the compounds 

represented by the red colour have overlapping 

properties with other subsets such as blue and yellow. 

Even though the axes of Fig. 1 are called DM and I, 

this is one of the generic representations since the 

same graphs were generated using other pairs of 

attributes by Mat Lab 7.9. Hence, we decided to run a 

separate statistical analysis for each of the three 

subsets. For the first subset (S) consisting of 1-19 

compounds, we constructed a model between the 

dependent variables called pIC50 and 13 independent 

variables called descriptors, namely, EHOMO, ELUMO, 

E, I, DM, MAC, η, σ, µ, χ, ω, MV and ZPE. Subset S 

is split into three heterogeneous sub-groups. While the 

first sub-group is composed of compounds 8, 9, 10, 11, 

13, 14 and 19, the second sub-group consists of 

compounds 1, 3, 4, 5, 15, 16 and 18. The last sub-

group contains the rest i.e., compounds 2, 6, 7, 12, and 

17. We defined a new variable called M by: 

 

𝑀 =
𝐸

𝐼
 

 

For the first sub-group, the constructed model 
using compounds 8, 9, 10, 11, 13, 14 and 19, the pIC50 

was determined using the equation below: 

 

√pIC50 = −7.88 + 13.015 ∗ 𝑀 

 

where 𝑀 =
𝐸

𝐼
 

 

The determination of the coefficient, R2 = 

0.95, is very high. In addition, the whole model is 

statistically significant since 0.00 < 0.05 and 0.00 < 

0.05 are significant values for constant and variable M 
obtained using SPSS 24.0 version, respectively. For 

the second sub-group, the constructed model using 

compounds 1, 3, 4, 5, 15, 16 and 18 is: 

 

√pIC50 = −25.96 + 37.19 ∗ 𝑀 

 

where 𝑀 =
𝐸

𝐼
 

 

The determination of the coefficient, R2 = 

0.66, is high. In addition, the whole model is 

statistically significant since 0.032 < 0.05 and 0.026 < 
0.05 are significant values for constant and M variable 

calculated using SPSS 24.0 version, respectively. 

 

 
 

Fig. 1: The output of Mat Lab 7.9 running prediction method called Linear Support Vector Machine between 

dipole moment (DM) and ionization potential (I). 
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For the third sub-group, the constructed 

model using compounds 2, 6, 7, 12 and 17 can be 

described by: 

 

√pIC50 = 12.29 − 15.082 ∗ 𝑀 

 

where 𝑀 =
𝐸

𝐼
 

 

The determination of the coefficient, R2 = 

0.70, is high. In addition, the whole model is 

statistically significant since 0.00 < 0.031 and 0.044 < 

0.005 are significant values for constant and M 

variable obtained using SPSS 24.0 version, 

respectively. Then, we examined the second subset 

(SO) consisting of compounds 20-32. Subset SO has 2 

heterogeneous sub-groups. While the first one is 
composed of compounds 21, 22, 23, 24, 25, 28, 30 and 

32, the second one consists of compounds 20, 26, 27, 

29 and 31. We defined a new variable called N by: 

 

𝑁 =
𝐼 + 𝐷𝑀

𝐸𝑁 ∗ 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑝ℎ𝑖𝑙𝑦
 

 

We constructed two different models. The 

first sub-group, consisting of compounds 21, 22, 23, 

24, 25, 28, 30 and 32, is represented by a model as 

follows: 

 

√pIC50 = 2.688 − 1.702 ∗ 𝑁 

 

where 𝑁 =
𝐼+𝐷𝑀

𝐸𝑁∗𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑝ℎ𝑖𝑙𝑦
 

 

Here again, R2 = 0.70 thus, referring to a 

statistically significant model. On the other hand, for 
the second sub-group consisting of compounds 20, 26, 

27, 29 and 31, it is described by the following 

equation: 

 

√pIC50 = −203.98 + 350.88 ∗ 𝑁 − 150.79 ∗ 𝑁3 

 

where 𝑁 =
𝐼+𝐷𝑀

𝐸𝑁∗𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑝ℎ𝑖𝑙𝑦
 

 

With R2 = 0.89, the whole model is 

statistically significant since 0.02 < 0.05, 0.031 < 0.05 

and 0.022 < 0.05 are significant values for constant, 

the N and N3 variables determined using SPSS 24.0 

version, respectively. The total number of compounds 

under investigation is 61 and the compounds 

numbered between 33 and 61 presented in Table 1 are 

related to the third subset denoted by SO2. All are 

utilized to construct models between pIC50 and 

descriptor variables. The first sub-group of those 

molecules whose numbers are called 33, 34, 35, 37, 

40, 42, 43, 45, 46, 47, 48, 49, 58, 59, 60 and 61 
generates a model, as follows: 

 

pIC50 = −2.715 − 1.785 ∗ 𝑀𝐴𝐶 
 

The value of R2 = 0.86 is very high. The 

whole model is found to be statistically significant 

with 0.00 < 0.05, 0.00 < 0.05 significant values for 

constant and the MAC variable. On the other hand, the 

second sub-group of those molecules (36, 39, 51, 53) 

generates another model, as follows: 

 

√pIC50 = −8.341 + 15.917 ∗ 𝑀 

 

where 𝑀 =
𝐸

𝐼
 

 

The R2 = 0.90 is very high. The whole model 

is found to be statistically significant with 0.007 < 

0.05, 0.004 < 0.05 significant values for constant and 

the variable M. The third sub-group of those molecules 

corresponding to 38, 41, 44, 50, 52 and 54 generates 

another model, as follows: 

 

√pIC50 = 12.860 − 16.707 ∗ 𝑀 

 

where 𝑀 =
𝐸

𝐼
 

 

The determination of coefficient, R2 = 0.95, 

is very high. 0.006 < 0.05, 0.007 < 0.05 are obtained 

for constant and the M variable that denotes a 

statistically significant model. 

 

Statistical analysis for water phase 

 
Before starting data analysis, the original data 

set of the 61 compounds is split into 3, as previously. 

1–19: Subset S, 20–32: Subset SO, and 33–61: Subset 

SO2. To verify this segmentation statistically, we 

performed a statistical analysis called Linear 

Discriminant Analysis (LDA) using Mat Lab 7.9 

version running 5-fold cross-validation, employing 

dependent variable called pIC50 and 13 descriptor 

variables, namely, EHOMO, ELUMO, E, I, DM, MAC, η, 

σ, µ, χ, ω, MV and ZPE. The prediction accuracy of the 

LDA is 91.8%, which is statistically very high. Fig. 2 

depicts the output of the analysis. 
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Fig. 2: The output of Mat Lab 7.9 running Linear Discriminant Analysis Method between pIC50 and class. 

 

In Fig. 2, each colour represents a different 
subset such as blue, red, and yellow. The molecules 

represented by the red have overlapping properties 

with molecules represented by yellow and blue. Fig. 2 

is a generic representation for all attributes since we 

can generate very similar graphs using other pairs of 

attributes. Therefore, we decided to run a separate 

statistical analysis for each of the three subsets. For the 

first subset (S) consisting of 19 compounds, we built a 

model between the dependent variable called pIC50 

and 13 independent variables called descriptors, 

namely, EHOMO, ELUMO, E, I, DM, MAC, η, σ, µ, χ, ω, 

MV and ZPE. Subset S is split into four heterogeneous 

sub-groups. The sub-group 1 comprises compounds 2, 
3, 4, 5, 8, 10, 11, and 19, the sub-group 2 consists of 

compounds 6, 12, 14, 15, and 18, the Sub-group 3 is 

composed of compounds 1, 9 and 13, the sub-group 4 

consists of compounds 7, 16 and 17. 

 

For the sub-groups 1, 2, 3, and 4, we defined 

a new variable called K, as follows: 

 

𝐾 =
√𝑀𝑉

𝐼
 

 

Then, a linear regression method is 

conducted to construct a model between pIC50 and K. 

For the sub-group S (compounds 2, 3, 4, 5, 8, 10, 11, 

19), the constructed model is determined as follows: 

 

pIC50 = −0.422 + 1.173 ∗ 𝐾 
 

where the determination of coefficient, R2 = 0.96, is 

very high and the p-value is 0.00 < 0.05. For sub-group 

SO (compounds 6, 12, 14, 15, 18), the constructed 
model is represented by 

 

pIC50 = −26.775 + 12.434 ∗ 𝐾 
 

The constructed model generates R2 = 0.77, 

which is high and the p-value is 0.045 < 0.05. The sub-

group SO2 (compounds 1, 9, 13) generates a model 

defined by  

 

pIC50 = −13.56 + 59.17 ∗ 𝐾 − 62.7 ∗ 𝐾2 
 

For this model, R2 = 0.98 is very high and the 

p-value is 0.01 < 0.05. The sub-group 4 (compounds 
7, 16, 17) leads to a model defined by 

 

pIC50 = −110.8 + 448.4 ∗ 𝐾 − 450.1 ∗ 𝐾2 
 

It generates R2 = 0.96, which is very high and 

the p-value is 0.015 < 0.05. The second subset (SO) 

consisting of compounds 20-32 are utilized to 

construct models based on a similar approach taken 

previously. Subset SO has 2 heterogeneous sub-

groups. While the first one comprises compounds 20, 

21, 22, 23, 27, 28, 30 and 32, the second one consists 

of compounds 24, 25, 26, 29 and 31. For the sub-

groups 1 and 2, we defined a new variable called K as 
follows: 

 

𝐾 =
√𝑀𝑉

𝐼
 

 

Then, a linear regression method is 

conducted to construct a model between pIC50 and K 
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for sub-group 1 consisting of compounds 20, 21, 22, 

23, 27, 28, 30 and 32: 

 

pIC50 = −5.839 + 3.364 ∗ 𝐾 
 

The resulting model leads to R2 = 0.98, which 

is very high and the p-value is 0.00 < 0.05. The sub-

group 2 (24, 25, 26, 29 and 31) leads to a model 

defined by 

 

pIC50 = 77.85 − 334.1 ∗ 𝑌 + 328.7 ∗ 𝐾2 
 

Its R2 = 0.78 is high and the p-value is 0.025 

< 0.05. For the subset SO2 (compounds 33–61), four 

sub-groups are generated. For the first sub-group (37, 

38, 39, 43, 44, 45, 47, 49, 54, 56 and 59), the 

constructed model in terms of K is given as follows: 

 

𝐾 =
√𝑀𝑉

𝐼
 

 

Then, linear regression is constructed 

between pIC50 and K as follows: 

 

pIC50 = −27.817 + 14.405 ∗ 𝐾 
 

Its R2 = 0.78 is high and the p-value is 0.025 
< 0.05. For the sub-group 2 (33, 36, 41, 42, 51, 52, 53, 

55, 58 and 60), the constructed model is given by: 

 

pIC50 = 1.61 ∗ exp(−9.666 ∗ 𝐾) 
 

It leads to R2 = 0.65 and the p-value is 0.006 

< 0.05. For sub-group 3 (34, 35, 40, 46 and 61), the 

model is given by: 

 

pIC50 = −3.548 + 3.095 ∗ 𝐾 
 

It leads to R2 = 0.82 and the p-value is 0.034 

< 0.05. For sub-group 4 (48, 50 and 57), the model is 

given by: 

 

pIC50 = −623.5 + 2654 ∗ 𝑍 − 2811 ∗ 𝐾2 
 

The constructed model has R2 = 0.92, which 

is very high and the p-value is 0.044 < 0.05. Two 

software, which are SPSS 24.0 and Mat Lab 7.9, are 

used to construct all the models 

 

Discussion for Statistical Analysis 
 

We examined 61 compounds in the gas phase 

that are classified as three groups, which are called 

subsets S, SO and SO2, according to the atoms and 

groups connected in the X position. Even though they 

are split into three groups from the chemical point of 

view, we run a statistical model called Linear 

Discriminant Analysis to verify this classification. 

Hence, the results suggest that the classification into 

three groups is validated. On the other hand, the 

compounds in each group, however, exhibit 
heterogeneous characteristics that result in two or 

more than two heterogeneous sub-groups. Therefore, 

each sub-group of compounds is modelled separately. 

While 
∆𝐸

𝐼
  ratio accounts for √pIC50 for S (subset 

S), 
𝐼+𝐷𝑀

𝐸𝑁∗𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑝ℎ𝑖𝑙𝑦
 ratio accounts for √pIC50 for SO 

(subset SO) with the highest R2 coefficient values. On 

the other hand, the descriptor called TMC accounts for 

pIC50 SO2 (subset SO2), 
∆𝐸

𝐼
 ratio accounts for pIC50 

with the highest R2 coefficient values in the gas phase. 

On the other hand, the ratio, 
√𝑀𝑉

𝐼
, accounts for pIC50 

with the highest R2 coefficient values for S, SO, and 

SO2, respectively when the water phase is used. 

 

In conclusion, although the dependent 

variable, called the pIC50 in the water phase, is 

accounted for only a single ratio called, 
√𝑀𝑉

𝐼
, the 

dependent variable named the pIC50 in the gas phase is 

accounted for two different ratios, called, 
∆𝐸

𝐼
 and 

𝐼+𝐷𝑀

𝐸𝑁∗𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑝ℎ𝑖𝑙𝑦
 , respectively concerning which group 

is under consideration. 

 

The discussion on corrosion inhibition is 
speculative and based on structural analogies with 

known inhibitors. While the presence of heteroatoms 

(N, O, S) and π-systems supports potential inhibitor 

activity, experimental validation is required to confirm 

adsorption behaviour and inhibition efficiency. Recent 

studies highlight the importance of synergistic effects 

and adsorption mechanisms for biologically active 

molecules in corrosion protection [79, 80]. Therefore, 

this section should be considered as a theoretical 

proposal for future experimental investigation. 

 

Conclusions 
 

In this study, some quantum chemical 

calculations were performed, and investigated 

electronic structure parameters such as frontier orbital 

energies, energy gap, ionization potential, chemical 

hardness, softness, dipole moment, electronegativity, 

and relationship of pIC50 with these parameters for the 

2-amino-6-aryl-sulfonyl benzonitrile derivatives (1-

61). These compounds examined as three series: 

compounds 1-19: Subset S, compounds 20-32: Subset 

SO and compounds 33-61: Subset SO2, according to 
the atoms and groups connected in the X position. 

These electronic structure parameters have been found 
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by using Gaussian 09 (Revision A.02) software with 

B3LYP/6-311G(d,p) basic set for gas and water 

phases of molecules, and discussed the relationship 

between these results with reaction efficiency. In 

addition to electronic structure parameters, statistical 
analysis of molecules is discussed. 

 

 

Even though each group is assumed to be 

homogenous, we found that each group composes of 

heterogeneous subgroups that generate different 

models with different quantum descriptors. Hence, the 

subgroups of the compounds need to be treated 

separately when statistical modelling is conducted. 

 

 

According to the study results, the three 
molecules with the highest pIC50 rank can be 

summarized as: According to EHOMO values, 13 > 12 > 

14 for the gas phase and 13 > 7 > 9 for the solvent 

phase of subset S, 27 > 26 > 30 for the gas phase and 

30 > 26 > 27 for the solvent phase of subset SO, and 

50 > 49 > 53 for the gas phase and 52 > 40 > 48 for the 

solvent phase of subset SO2; according to energy gap 

(E) values, 2 > 15 > 9 for the gas and 15 > 2 > 18 for 

the solvent phase of subset S, 24 > 21 > 20 for the gas 

phase and 30 > 24 > 26 for the solvent phase of subset 

SO, and 50 > 53 > 49 for the gas phase and 50 > 48 > 

53 for the solvent phase of subset SO2; according to 

ionization potential (I) values, 15 > 2 > 18 for the gas 
and solvent phases of subset S, 20 > 21 > 29 for the 

gas phase and 20 > 29 > 23 for the solvent phase of 

subset SO, and 34 > 61 > 60 for the gas phase and 34 

> 36 > 60 for the solvent phase of subset SO2; 

according to the electronegativity () values, 15 > 2 > 

18 for the gas and 15 > 2 > 16 for the solvent phases 

of subset S, 20 > 21 > 29 for the gas phase and 20 > 29 

> 23 for the solvent phase of subset SO, and 34 > 60 > 

61 for the gas phase and 34 > 36 > 37 for the solvent 

phase of subset SO2. According to the quantum 

chemical parameter results, the activity and inhibitor 

efficiency rankings for the gas and solvent phases are 

seen to be almost similar, despite minor differences 
(Table 4). 

 

The two different phases for 61 compounds, 

which are called gas and water, have been utilized to 

account for the relationship between pIC50 and the 

descriptor variables of those compounds. All 

relationships that are constructed are nonlinear. Even 
though compounds are classified into three groups, 

each group is not homogenous by itself. In other 

words, each group consists of heterogeneous 

subgroups that require constructing different models. 

For example, when S (subset S) in the gas phase is 

considered, it has three heterogeneous subgroups. 

Thus, pIC50 for each group is accounted for using 

descriptor variables. Interestingly, the same ratio, 

called 
∆𝐸

𝐼
, in each subgroup appears to be a descriptor 

variable. On the other hand, SO2 (subset SO2) has three 

subgroups. pIC50 for each group is accounted for using 

different descriptor variables. While MAC is a 

descriptor variable for one subgroup, the ratio, called 
∆𝐸

𝐼
, is utilized for the other two subgroups. Similar 

results are obtained for the compounds in the water 

phase. 

 
 

In summary, this study successfully 

integrates DFT calculations with statistical modelling 

to identify key quantum descriptors influencing the 

anti-HIV activity of 2-amino-6-

arylsulfonylbenzonitrile derivatives. The models 

demonstrate high explanatory power through internal 

validation; however, external validation on 

independent compounds is recommended to confirm 

predictive robustness. Additionally, while the 

corrosion inhibition potential is discussed 
theoretically, experimental studies are necessary to 

substantiate these claims. Future work should also 

explore explicit solvation models and mechanistic 

studies to further elucidate the structure-activity 

relationships. 
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Table-4: The most active compounds according to some quantum chemical parameter results for the gas and 

water phases. 
 Subset S Subset SO Subset SO2 

Parameter Gas Water Gas Water Gas Water 

EHOMO 13 > 12 > 14 13 > 7 > 9 27 > 26 > 30 30 > 26 > 27 50 > 49 > 53 52 > 40 > 48 

E 2 > 15 > 9 15 > 2 > 18 24 > 21 > 20 30 > 24 > 26 50 > 53 > 49 50 > 48 > 53 

I 15 > 2 > 18 15 > 2 > 18 20 > 21 > 29 20 > 29 > 23 34 > 61 > 60 34 > 36 > 60 

 15 > 2 > 18 15 > 2 > 16 20 > 21 > 29 20 > 29 > 23 34 > 60 > 61 34 > 36 > 37 

DM 12 > 13 > 14 12 > 13 > 14 26 > 27 > 28 26 > 27 > 28 48 > 49 > 51 48 > 51 > 49 



M. Izzettin Yilmazer et al.,         J.Chem.Soc.Pak., Vol. 48, No. 01, 2026   27 

 

References 

 

1. HIV.Gov, Global HIV Data and Statistics, 

Available from, https://www.hiv.gov/hiv-

basics/overview/data-and-trends/global-statistics, 

(2023). 

2. N. Azzman, M. S. A. Gill, S. S. Hassan, F. Christ, 

Z. Debyser, W. A. S. Mohamed and N. Ahemad, 

Pharmacological Advances in Anti-Retroviral 

Therapy for Human Immunodeficiency Virus-1 

Infection: A Comprehensive Review, Rev. Med. 

Virol., 34, 2529 (2024). 

https://doi.org/10.1002/rmv.2529. 

3. R. Hua, J. P. Doucet, M. Delamar and R. Zhang, 

QSAR Models for 2-Amino-6-

Arylsulfonylbenzonitriles and Congeners HIV-1 

Reverse Transcriptase Inhibitors Based on Linear 

and Nonlinear Regression Methods, Eur. J. Med. 

Chem., 44, 2158 (2009).  

https://doi.org/10.1016/j.ejmech.2008.10.021. 

4. S. X. Gu, T. Xiao, Y. Y. Zhu,  and F. E. Chen, 

Recent Progress in HIV-1 Inhibitors Targeting the 

Entrance Channel of HIV-1 Non-Nucleoside 

Reverse Transcriptase Inhibitor Binding Pocket, 

European J. Med. Chem., 174, 277 (2019). 

https://doi.org/10.1016/j.ejmech.2019.04.054. 

5. J. H. Chan, J. S. Hong, R. N. Hunter, G. F. Orr, J. 

R. Cowan, D. B. Sherman, S. M. Sparks, B. E. 

Reitter, C. W. Andrews, R. J. Hazen, M. St Clair, 

L. R. Boone, R. G. Ferris, K. L. Creech, G. B. 

Roberts, S. A. Short, K. Weaver, R. J. Ott, J. Ren, 

A. Hopkins, D. I. Stuart and D. K. Stammers, 2-

Amino-6-Arylsulfonylbenzonitriles as Non-

Nucleoside Reverse Transcriptase Inhibitors of 

HIV-1, J. Med. Chem., 44, 1866 (2001). 

https://pubs.acs.org/doi/10.1021/jm0004906. 

6. K. Roy and J. T. Leonard, QSAR Modelling of 

HIV-1 Reverse Transcriptase Inhibitor 2-Amino-

6-Arylsulfonylbenzonitriles and Congeners Using 

Molecular Connectivity and E-State Parameters, 

Bioorg. Med. Chem., 12, 745 (2004). 

https://doi.org/10.1016/j.bmc.2003.11.009. 

7. R. Hu, F. Barbault, M. Delamar and R. Zhang, 

Receptor and Ligand-Based 3D-QSAR Study for 

a Series of Non-Nucleoside HIV-1 Reverse 

Transcriptase Inhibitors, Bioorg. Med. Chem., 17, 

2400 (2009). 

https://doi.org/10.1016/j.bmc.2009.02.003. 

8. J. R. Pinheiro, M. Bitencourt, E. F. F. da Cunha, T. 

C. Ramalho and M. P. Freitas, Novel Anti-HIV 

Cyclotriazadisulfonamide Derivatives as 

Modeled by Ligand and Receptor-Based 

Approaches, Bioorg. Med. Chem., 16, 1683 

(2008). 

https://doi.org/10.1016/j.bmc.2007.11.020. 

9. R. Sabet and M. Sabet, Application of Substituent 

Electronic Descriptors QSAR Model of 2-Amino-

6-Arylsulfonylbenzonitriles as HIV-1 Reverse 

Transcriptase Inhibitors Based on The MOLMAP 

Approach, Asian J. App. Chem. Res., 1, 1 (2018). 

https://doi.org/10.9734/ajacr/2018/v1i29617. 

10. R. D. Cramer, D. E. Patterson and J. D. Bunce, 

Comparative Molecular Field Analysis (CoMFA). 

1. Effect of Shape on Binding of Steroids to 

Carrier Proteins, J. Am. Chem. Soc., 110, 5959 

(1988). https://doi.org/10.1021/ja00226a005. 

11. T. Aoyama, Y. Suzuki and H. Ichikawa, Neural 

Networks Applied to Structure-Activity 

Relationships, J. Med. Chem., 33, 905 (1990). 

https://doi.org/10.1021/jm00165a004. 

12. T. Aoyama, Y. Suzuki and H. Ichikawa, Neural 

Networks Applied to Pharmaceutical Problems. 

III. Neural Networks Applied to Quantitative 

Structure-Activity Relationship (QSAR) Analysis, 

J. Med. Chem., 33, 2583 (1990). 

https://doi.org/10.1021/jm00171a037. 

13. X. J. Yao, A. Panaye, J. P. Doucet, R. S. Zhang, 

H. F. Chen, M. C. Liu, Z. D. Hu and B. T. Fan, 

Comparative Study of QSAR/QSPR Correlations 

Using Support Vector Machines, Radial Basis 

Function Neural Networks, and Multiple Linear 

Regression, J. Chem. Inf. Comput. Sci., 44, 1257 

(2004). https://doi.org/10.1021/ci049965i. 

14. A. Szczurek and M. Maciejewska, Recognition of 

Benzene, Toluene and Xylene Using TGS Array 

Integrated with Linear and Non-Linear Classifier, 

Talanta, 64, 609 (2004). 

https://doi.org/10.1016/j.talanta.2004.03.036. 

15. X. Ding, D. Kang, L. Sun, P. Zhan and X. Liu, 

Combination of 2D and 3D-QSAR Studies on 

DAPY and DANA Derivatives as Potent HIV-1 

NNRTIs, J. Mol. Struct., 1249, 131603 (2022). 

https://doi.org/10.1016/j.molstruc.2021.131603. 

16. X. J. Yao, A. Panaye, J. P. Doucet, R. S. Zhang, 

H. F. Chen, M. C. Liu, Z. D. Hu and B. T. Fan, 

Comparative Study of QSAR/QSPR Correlations 

Using Support Vector Machines, Radial Basis 

Function Neural Networks, and Multiple Linear 

Regression, J. Chem. Inf. Comp. Sci., 44, 1257 

(2004). https://doi.org/10.1021/ci049965i  

17. R. Hu, F. Barbault, M. Delamar and R. Zhang, 

Receptor- and Ligand-Based 3D-QSAR Study for 

a Series of Non-Nucleoside HIV-1 Reverse 

Transcriptase Inhibitors, Bioorg. Med. Chem., 17, 

2400 (2009). 

https://doi.org/10.1016/j.bmc.2009.02.003 

https://www.hiv.gov/hiv-basics/overview/data-and-trends/global-statistics
https://www.hiv.gov/hiv-basics/overview/data-and-trends/global-statistics
https://doi.org/10.1002/rmv.2529
https://doi.org/10.1016/j.ejmech.2008.10.021
https://www.sciencedirect.com/science/article/pii/S0223523419303721#!
https://www.sciencedirect.com/science/article/pii/S0223523419303721#!
https://www.sciencedirect.com/science/article/pii/S0223523419303721#!
https://www.sciencedirect.com/science/article/pii/S0223523419303721#!
https://doi.org/10.1016/j.ejmech.2019.04.054
https://pubs.acs.org/doi/10.1021/jm0004906
https://doi.org/10.1016/j.bmc.2003.11.009
https://doi.org/10.1016/j.bmc.2009.02.003
https://doi.org/10.1016/j.bmc.2007.11.020
https://doi.org/10.9734/ajacr/2018/v1i29617
https://doi.org/10.1021/ja00226a005
https://doi.org/10.1021/jm00165a004
https://doi.org/10.1021/jm00171a037
https://doi.org/10.1021/ci049965i
https://doi.org/10.1016/j.talanta.2004.03.036
https://www.sciencedirect.com/author/7004413261/peng-zhan
https://www.sciencedirect.com/author/35275132300/xinyong-liu
https://doi.org/10.1016/j.molstruc.2021.131603
https://doi.org/10.1021/ci049965i
https://doi.org/10.1016/j.bmc.2009.02.003


M. Izzettin Yilmazer et al.,           J.Chem.Soc.Pak., Vol. 48, No. 01, 2026  28 
 

 

18. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. 

Scuseria, M. A. Robb, J. R. Cheeseman, G. 

Scalmani, V. Barone, G. A. Petersson, H. 

Nakatsuji, X. Li, M. Caricato, A. Marenich, J. 

Bloino, B. G. Janesko, R. Gomperts, B. 

Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. 

Izmaylov, J. L. Sonnenberg, D. Williams-Young, 

F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, 

A. Petrone, T. Henderson, D. Ranasinghe, V. G. 

Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, 

M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. 

Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. 

Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. 

Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. 

Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. 

N. Staroverov, T. Keith, R. Kobayashi, J. 

Normand, K. Raghavachari, A. Rendell, J. C. 

Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. 

Millam, M. Klene, C. Adamo, R. Cammi, J. W. 

Ochterski, R. L. Martin, K. Morokuma, O. Farkas, 

J. B. Foresman and D. J. Fox, Gaussian 09, 

Revision A.02, Gaussian Inc., Wallingford CT 

(2016). 

19. M. Saracoglu, Z. Kokbudak, Z. Çimen and F. 

Kandemirli, Synthesis and DFT Quantum 

Chemical Calculations of Novel Pyrazolo[1,5-

C]Pyrimidin-7(1H)-One Derivatives, J. Chem. 

Soc. Pakistan, 41, 479 (2019). 

20. Z. Kökbudak, M. Saracoglu, S. Akkoç, Z. Çimen, 

M. I. Yilmazer and F. Kandemirli, Synthesis, 

Cytotoxic Activity and Quantum Chemical 

Calculations of New 7-Thioxopyrazolo[1,5-

F]Pyrimidin-2-One Derivatives, J. Mol. Struct., 

1202, 127261 (2020). 

https://doi.org/10.1016/j.molstruc.2019.127261. 

21. M. A. Amin, M. Saracoglu, N. El-Bagoury, T. 

Sharshar, M. M. Ibrahim, J. Wysocka, S. 

Krakowiak and J. Ryl, Microstructure and 

Corrosion Behaviour of Carbon Steel and Ferritic 

and Austenitic Stainless Steels in NaCl Solutions 

and the Effect of p-Nitrophenyl Phosphate 

Disodium Salt, Int. J. Electrochem. Sci., 11, 

10029 (2016). 

https://doi.org/10.20964/2016.12.17. 

22. M. Saracoglu, Z. Kokbudak, M. I. Yilmazer and 

F. Kandemirli, Synthesis and DFT Studies of 

Pyrimidin-1(2H)-ylaminofumarate Derivatives, 

J. Chem. Soc., Pakistan, 42, 746 (2020). 

https://doi.org/10.52568/000679/JCSP/42.05.202

0. 

23. M. A. Amin, O. A. Hazzazi, F. Kandemirli and M. 

Saracoglu, Inhibition Performance and 

Adsorptive Behaviour of Three Amino Acids on 

Cold Rolled Steel in 1.0 M HCl-Chemical, 

Electrochemical and Morphological Studies, 

Corrosion, 68, 688 (2012). 

https://doi.org/10.5006/0506. 

24. F. Kandemirli, M. Saracoglu, G. Bulut, E. 

Ebenso, T. Arslan and A. Kayan, Synthesis, 

Theoretical Study on Zinc (II) and Nickel (II) 

Complexes of 5-Methoxyisatin 3-[N-(4-

Chlorophenyl) Thiosemicarbazone], J. Mat. 

Fund. Sci., 44, 35 (2012). 

https://doi.org/10.5614/itbj.sci.2012.44.1.4. 

25. K. S. M. Ferigita, M. G. K. AlFalah, M. 

Saracoglu, Z. Kokbudak, S. Kaya, M. O. A. 

Alaghani and F. Kandemirli, Corrosion 

Behaviour of New Oxo-Pyrimidine Derivatives 

on Mild Steel in Acidic Media: Experimental, 

Surface Characterization, Theoretical, and Monte 

Carlo Studies, App. Surf. Sci. Adv., 7, 100200 

(2022). 

https://doi.org/10.1016/j.apsadv.2021.100200. 

26. M. Saracoglu, M. I. A. Elusta, S. Kaya, C. Kaya 

and F. Kandemirli, Quantum Chemical Studies on 

the Corrosion Inhibition of Fe78B13Si9 Glassy 

Alloy in Na2SO4 Solution of Some 

Thiosemicarbazone Derivatives, Int. J. 

Electrochem. Sci., 13, 8241 (2018). 

https://doi.org/10.20964/2018.08.74. 

27. F. Kandemirli, M. Saracoglu, M. A. Amin, M. A. 

Basaran and C. D. Vurdu, The Quantum Chemical 

Calculations of Serine, Therionine and 

Glutamine, Int. J. Electrochem. Sci., 9, 7 3819 

(2014). 

28. A. Tazouti, M. Galai, R. Touir, M. E. Touhami, 

A. Zarrouk, Y. Ramli, M. Saracoglu, S. Kaya, F. 

Kandemirli and C. Kaya, Experimental and 

Theoretical Studies for Mild Steel Corrosion 

Inhibition in 1.0 M HCl by Three New 

Quinoxalinone Derivatives, J. Mol. Liq., 221, 815 

(2016). 

https://doi.org/10.1016/j.molliq.2016.03.083. 

29. K. S. M. Ferigita, M. Saracoglu, M. G. K. 

AlFalah, M. I. Yilmazer, Z. Kokbudak, S. Kaya 

and F. Kandemirli, Corrosion Inhibition of Mild 

Steel in Acidic Media Using New Oxo-

Pyrimidine Derivatives: Experimental and 

Theoretical Insights, J. Mol. Struc., 1284, 135361 

(2023). 

https://doi.org/10.1016/j.molstruc.2023.135361. 

30. M. G. K. AlFalah, K. S. M. Freigita, M. I. 

Yilmazer, M. Saracoglu, Z. Kokbudak and F. 

Kandemirli, Corrosion Inhibition Potential of 

New Oxo-Pyrimidine Derivative on Mild Steel in 

Acidic Solution: Experimental and Theoretical 

Approaches, J. Mol. Struc., 1315, 138773 (2024). 

https://doi.org/10.1016/j.molstruc.2024.138773. 

https://doi.org/10.1016/j.molstruc.2019.127261
https://doi.org/10.20964/2016.12.17
https://jcsp.org.pk/issueDetail.aspx?aid=3a58e414-381d-456b-bdff-adb7d2d923a1
https://jcsp.org.pk/issueDetail.aspx?aid=3a58e414-381d-456b-bdff-adb7d2d923a1
https://doi.org/10.5006/0506
https://www.webofscience.com/wos/woscc/full-record/WOS:000215679500004
http://doi.org/10.5614/itbj.sci.2012.44.1.4
http://doi.org/10.5614/itbj.sci.2012.44.1.4
https://doi.org/10.1016/j.apsadv.2021.100200
https://doi.org/10.20964/2018.08.74
https://doi.org/10.1016/j.molliq.2016.03.083
https://doi.org/10.1016/j.molstruc.2023.135361
https://doi.org/10.1016/j.molstruc.2024.138773


M. Izzettin Yilmazer et al.,           J.Chem.Soc.Pak., Vol. 48, No. 01, 2026  29 
 

 

31. B. Saima, A. Khan, R. U. Nisa, T. Mahmood and 

K. Ayub, Theoretical Insights into Thermal 

Cyclophanediene to Dihydropyrene Electrocyclic 

Reactions, a Comparative Study of Woodward 

Hoffmann Allowed and Forbidden Reactions, J. 

Mol. Model., 22, 81 (2016). 

https://doi.org/10.1007/s00894-016-2948-6. 

32. M. Saracoglu, Z. Kokbudak, E. Yalcin and F. 

Kandemirli, Synthesis and DFT Quantum 

Chemical Calculations of 2-Oxopyrimidin-1(2H)-

yl-Thiourea and Urea Derivatives, J. Chem. Soc. 

Pakistan, 41, 841 (2019). 

33. M. Saracoglu, S. G. Kandemirli, A. Başaran, H. 

Sayiner and F. Kandemirli, Investigation of 

Structure-Activity Relationship Between 

Chemical Structure and CCR5 Anti-HIV-1 

Activity in a Class of 1-[N-(Methyl)-N-

(Phenylsulfonyl)Amino]-2-(Phenyl)-4-[4-

(Substituted)Piperidin-1-yl]Butane Derivatives: 

The Electronic-Topological Approach, Curr. HIV 

Res., 9, 300 (2011). 

http://dx.doi.org/10.2174/157016211797635964. 

34. M. Saracoglu, F. Kandemirli, M. A. Amin, C. D. 

Vurdu, M. S. Cavus and G. Sayıner, The Quantum 

Chemical Calculations of Some Thiazole 

Derivatives, Proc. 3rd Int. Conf. Comp. Sci. 

Technol. (ICCST-3), Published by Atlantis Press, 

5, p. 149 (2015). https://doi.org/10.2991/iccst-

15.2015.29. 

35. M. G. L. Annaamalai, G. Maheswaran, N. 

Ramesh, C. Kamal, G. Venkatesh and P. Vennila, 

Investigation of Corrosion Inhibition of Welan 

Gum and Neem Gum on Reinforcing Steel 

Embedded in Concrete, Int. J. Electrochem. Sci., 

13, 9981 (2018). 

https://doi.org/10.20964/2018.10.41. 

36. G. Venkatesh, C. Kamal, P. Vennila, S. Kaya, M

. G. L. Annaamalai and B. El Ibrahimi, 

Sustainable Corrosion Inhibitor for Steel 

Embedded in Concrete by Guar Gum: 

Electrochemical and Theoretical Analyses, Appl. 

Surf. Sci. Adv., 12, 100328 (2025). 

https://doi.org/10.1016/j.apsadv.2022.100328. 

37. N. Er-

rahmany, M. Nounah, S. Yaqouti, A. Nounah, R.

 Touir and E. H. El Kafssaoui, Quinoxaline 

Derivatives as Corrosion Inhibitors: Development 

of Predictive Machine Using Partial Least 

Squares and Random Forest (PLS/RF) Models 

Based on Quantitative Structure-Activity 

Relationship (QSAR), Next Res., 2, 100148 

(2025). 

https://doi.org/10.1016/j.nexres.2025.100148. 

38. R. Farahati, S. M. Mousavi-Khoshdel, A. 

Ghaffarinejad and H. Behzadi, Experimental and 

Computational Study of Penicillamine Drug and 

Cysteine as Water-Soluble Green Corrosion 

Inhibitors of Mild Steel, Prog. Org. Coat., 142, 

105567 (2020). 

https://doi.org/10.1016/j.porgcoat.2020.105567. 

39. N. Palaniappan, J. Alphonsa, I. S. Cole, K. 

Balasubramanian and I. G. Bosco, Rapid 

Investigation Expiry Drug Green Corrosion 

Inhibitor on Mild Steel in NaCl Medium, Mat. 

Sci. Eng. B., 249, 114423 (2019). 

https://doi.org/10.1016/j.mseb.2019.114423. 

40. Q. H. Zhang, B. S. Hou, Y. Y. Li, Y. Lei, X. 

Wang, H. F. Liu and G.A. Zhang, Two Amino 

Acid Derivatives as High Efficient Green 

Inhibitors for the Corrosion of Carbon Steel in 

CO2-Saturated Formation Water, Corr. Sci., 189, 

109596 (2021). 

https://doi.org/10.1016/j.corsci.2021.109596. 

41. N. Al-Akhras and Y. Mashaqbeh, Potential Use of 

Eucalyptus Leaves as Green Corrosion Inhibitor 

of Steel Reinforcement, J. Build. Eng., 35, 

101848 (2021). 

https://doi.org/10.1016/j.jobe.2020.101848. 

42. K. Haruna, T. A. Saleh and M. A. Quraishi, 

Expired Metformin Drug as Green Corrosion 

Inhibitor for Simulated Oil/Gas Well Acidizing 

Environment, J. Mol. Liq., 315, 113716 (2020). 

https://doi.org/10.1016/j.molliq.2020.113716. 

43. P. Geethamani and P. K. Kasthuri, The Inhibitory 

Action of Expired Asthalin Drug on the Corrosion 

of Mild Steel in Acidic Media: A Comparative 

Study, J. Taiwan Inst. Chem. E., 63, 490-499 

(2016). 

https://doi.org/10.1016/j.jtice.2016.03.008. 

44. P. Singh, D. S. Chauhan, S. S. Chauhan, G. Singh 

and M. A. Quraishi, Chemically Modified 

Expired Dapsone Drug as Environmentally 

Benign Corrosion Inhibitor for Mild Steel in 

Sulphuric Acid Useful for Industrial Pickling 

Process, J. Mol. Liq., 286, 110903 (2019). 

https://doi.org/10.1016/j.molliq.2019.110903. 

45. K. F. Khaled, Studies of Iron Corrosion Inhibition 

Using Chemical, Electrochemical and Computer 

Simulation Techniques, Electrochim. Acta, 55, 

6523 (2010). 

https://doi.org/10.1016/j.electacta.2010.06.027. 

46. M. J. S. Dewar and W. Thiel, Ground States of 

Molecules. 38. The MNDO Method. 

Approximations and Parameters, J. Am. Chem. 

Soc., 99, 4899 (1977). 

https://doi.org/10.1021/ja00457a004. 

https://doi.org/10.1007/s00894-016-2948-6
http://dx.doi.org/10.2174/157016211797635964
https://doi.org/10.2991/iccst-15.2015.29
https://doi.org/10.2991/iccst-15.2015.29
https://doi.org/10.20964/2018.10.41
https://doi.org/10.1016/j.apsadv.2022.100328
https://doi.org/10.1016/j.nexres.2025.100148
https://doi.org/10.1016/j.porgcoat.2020.105567
https://doi.org/10.1016/j.mseb.2019.114423
https://www.sciencedirect.com/science/article/pii/S0010938X21003620#!
https://www.sciencedirect.com/science/article/pii/S0010938X21003620#!
https://www.sciencedirect.com/science/article/pii/S0010938X21003620#!
https://www.sciencedirect.com/science/article/pii/S0010938X21003620#!
https://doi.org/10.1016/j.corsci.2021.109596
https://doi.org/10.1016/j.jobe.2020.101848
https://doi.org/10.1016/j.molliq.2020.113716
https://doi.org/10.1016/j.jtice.2016.03.008
https://doi.org/10.1016/j.molliq.2019.110903
https://doi.org/10.1016/j.electacta.2010.06.027
https://doi.org/10.1021/ja00457a004


M. Izzettin Yilmazer et al.,           J.Chem.Soc.Pak., Vol. 48, No. 01, 2026  30 
 

 

47. R. G. Pearson, Hard and Soft Acids and Bases—

the Evolution of a Chemical Concept, Coord. 

Chem. Rev., 100, 403 (1990). 

https://doi.org/10.1016/0010-8545(90)85016-L. 

48. L. Pauling, The Nature of the Chemical bond, 

Cornell University Press, New York, USA 

(1960). 

49. R. G. Parr and R. G. Pearson, Absolute Hardness: 

Companion Parameter to Absolute 

Electronegativity, J. Am. Chem. Soc., 105, 7512 

(1983). https://doi.org/10.1021/ja00364a005. 

50. P. K. Chattaraj, U. Sarkar and D. R. Roy, 

Electrophilicity Index, Chem. Rev., 106, 2065 

(2006). https://doi.org/10.1021/cr040109f. 

51. E. E. Ebenso, M. M. Kabanda, T. Arslan, M. 

Saracoglu, F. Kandemirli, L. C. Murulana, A. K. 

Singh, S. K. Shukla, B. Hammouti, K. F. Khaled, 

M. A. Quraishi, I. B. Obot and N. O. Edd, 

Quantum Chemical Investigations on Quinoline 

Derivatives as Effective Corrosion Inhibitors for 

Mild Steel in Acidic Medium, Int. J. Electrochem. 

Sci., 7, 5643 (2012). 

52. A. Y. Musa, A. H. Kadhum, A. B. Mohamad, A. 

B. Rohoma and H. Mesmari, Electrochemical and 

Quantum Chemical Calculations on 4,4-

Dimethyloxazolidine-2-Thione as Inhibitor for 

Mild Steel Corrosion in Hydrochloric Acid, J. 

Mol. Struct., 969, 233 (2010). 

https://doi.org/10.1016/j.molstruc.2010.02.051. 

53. K. F. Khaleda and M. M. Al-Qahtani, The 

Inhibitive Effect of Some Tetrazole Derivatives 

Towards Al Corrosion in Acid Solution: 

Chemical, Electrochemical and Theoretical 

Studies, Mater. Chem. Phys., 113, 150 (2009). 

https://doi.org/10.1016/j.matchemphys.2008.07.0

60. 

54. H. Luo, Y. C. Guan and K. N. Han, Corrosion 

Inhibition of a Mild Steel by Aniline and 

Alkylamines in Acidic Solutions, Corrosion, 54, 

721 (1998). https://doi.org/10.5006/1.3284891. 

55. S. Martinez and I. Štagljar, Correlation Between 

the Molecular Structure and the Corrosion 

Inhibition Efficiency of Chestnut Tannin in 

Acidic Solutions, J. Mol. Struct.: THEOCHEM, 

640, 167 (2003). 

https://doi.org/10.1016/j.theochem.2003.08.126. 

56. R. G. Pearson, Hard and Soft Acids and Bases, 

Survey Prog. Chem., 5, 1 (1969). 

https://doi.org/10.1016/B978-0-12-395706-

1.50007-8. 

57. M. M., Solomon S. A. Umoren, I. I. Udosoro and 

A. P. Udoh, Inhibitive and Adsorption Behaviour 

of Carboxymethyl Cellulose on Mild Steel 

Corrosion in Sulphuric Acid Solution, Corros. 

Sci., 52, 1317 (2010). 

https://doi.org/10.1016/j.corsci.2009.11.041. 

58. A. Rauk, Orbital Interaction Theory of Organic 

Chemistry, Wiley & Sons, New York, USA 

(2001). https://doi.org/10.1002/0471220418.ch3. 

59. M. B. Manaa, N. Issaoui, N. Bouaziz and A. B. 

Lamine, Combined Statistical Physics Models 

and DFT Theory to Study the Adsorption Process 

of Paprika Dye on TiO2 for Dye Sensitized Solar 

Cells, J. Mater. Res. Technol., 9-2, 1175 (2020). 

https://doi.org/10.1016/j.jmrt.2019.11.045 

60. M. Khodiev, U. Holikulov, A. Jumabaev, N. Issa

oui, L. N. Lvovich, O. M. Al-Dossary and L. 

G. Bousiakoug, Solvent Effect on the Self-

Association of the 1,2,4-Triazole: A DFT Study, 

J. Mol. Liq., 382, 121960 (2023). 

https://doi.org/10.1016/j.molliq.2023.121960  

61. N. O. Obi-Egbedi, I. B. Obot and M. I. El-

Khaiary, Quantum Chemical Investigation and 

Statistical Analysis of the Relationship Between 

Corrosion Inhibition Efficiency and Molecular 

Structure of Xanthene and Its Derivatives on Mild 

Steel in Sulphuric Acid, J. Mol. Struct., 1002, 86 

(2011). 

https://doi.org/10.1016/j.molstruc.2011.07.003. 

62. M. Djenane, S. Chafaa,  N. Chafai, R.  Kerkour 

and A. Hellal, Synthesis, Spectral Properties and 

Corrosion Inhibition Efficiency of New Ethyl 

Hydrogen [(Methoxyphenyl) (Methylamino) 

Methyl] Phosphonate Derivatives: Experimental 

and Theoretical Investigation, J. Mol. Struct., 

1175, 398 (2019). 

https://doi.org/10.1016/j.molstruc.2018.07.087. 

63. J. Bhawsar, P. Jain, M. G. Valladares-Cisneros, C. 

Cuevas-Arteaga and M. R. Bhawsar, Quantum 

Chemical Assessment of Two Natural 

Compounds: Vasicine and Vasicinone as Green 

Corrosion Inhibitors, Int. J. Electrochem. Sci., 13, 

3200 (2018). 

https://doi.org/10.20964/2018.04.57. 

64. I. B. Obot, N. O. Obi-Egbedi and A. O. Eseola, 

Anticorrosion Potential of 2-Mesityl-1H-

Imidazo[4,5-F][1,10]Phenanthroline on Mild 

Steel in Sulfuric Acid Solution: Experimental and 

Theoretical Study, Ind. Eng. Chem. Res., 50, 2098 

(2011). https://doi.org/10.1021/ie102034c. 

65. I. B. Obot, N. O. Obi-Egbedi, E. E. Ebenso, A. S. 

Afolabi and E. E. Oguzie, Experimental, 

Quantum Chemical Calculations, and Molecular 

Dynamic Simulations Insight into the Corrosion 

Inhibition Properties of 2-(6-Methylpyridin-2-

yl)Oxazolo[5,4-F][1,10]Phenanthroline on Mild 

Steel, Res. Chem. Intermed., 39, 1927 (2013). 

https://doi.org/10.1007/s11164-012-0726-3. 

https://doi.org/10.1016/0010-8545(90)85016-L
https://doi.org/10.1021/ja00364a005
https://doi.org/10.1021/cr040109f
https://doi.org/10.1016/j.molstruc.2010.02.051
https://doi.org/10.1016/j.matchemphys.2008.07.060
https://doi.org/10.1016/j.matchemphys.2008.07.060
https://doi.org/10.5006/1.3284891
https://doi.org/10.1016/j.theochem.2003.08.126
https://doi.org/10.1016/B978-0-12-395706-1.50007-8
https://doi.org/10.1016/B978-0-12-395706-1.50007-8
https://doi.org/10.1016/j.corsci.2009.11.041
https://doi.org/10.1002/0471220418.ch3
https://doi.org/10.1016/j.jmrt.2019.11.045
https://www.sciencedirect.com/author/22134593300/issaoui-noureddine
https://www.sciencedirect.com/author/22134593300/issaoui-noureddine
https://www.sciencedirect.com/author/14521898000/omar-m-al-dossary
https://doi.org/10.1016/j.molliq.2023.121960
https://doi.org/10.1016/j.molstruc.2011.07.003
https://www.sciencedirect.com/science/article/pii/S0022286018309062#!
https://www.sciencedirect.com/science/article/pii/S0022286018309062#!
https://www.sciencedirect.com/science/article/pii/S0022286018309062#!
https://www.sciencedirect.com/science/article/pii/S0022286018309062#!
https://doi.org/10.1016/j.molstruc.2018.07.087
https://doi.org/10.20964/2018.04.57
https://doi.org/10.1021/ie102034c
https://doi.org/10.1007/s11164-012-0726-3


M. Izzettin Yilmazer et al.,           J.Chem.Soc.Pak., Vol. 48, No. 01, 2026  31 
 

 

66. R. G. Parr and P. K. Chattaraj, Principle of 

Maximum Hardness, J. Am. Chem. Soc., 113, 

1854 (1991). 

https://doi.org/10.1021/ja00005a072. 

67. D. Bhattacharjee, T. K. Devi, R. Dabrowski and 

A. Bhattacharjee, Birefringence, Polarizability 

Order Parameters and DFT Calculations in The 

Nematic Phase of Two Bent-Core Liquid Crystals 

and Their Correlation, J. Mol. Liq., 272, 239 

(2018). 

https://doi.org/10.1016/j.molliq.2018.09.052. 

68. R. G. Pearson, The Principle of Maximum 

Hardness, Acc. Chem. Res., 26, 250 (1993). 

https://doi.org/10.1021/ar00029a004. 

69. R. G. Pearson, Absolute Electronegativity and 

Hardness Correlated with Molecular Orbital 

Theory, Proc. Nat. Acad. Sci. USA, 83, 8440 

(1986). https://doi.org/10.1073/pnas.83.22.8440. 

70. M. M. Ibrahim, G. A. M. Mersal, A. M. Fallatah, 

M. Saracoglu, F. Kandemirli, S. Alharthi, S. 

Szunerits, R. Boukherroub, J. Ryl and M. A. 

Amin, Electrochemical, Theoretical and Surface 

Physicochemical Studies of The Alkaline Copper 

Corrosion Inhibition by Newly Synthesized 

Molecular Complexes of Benzenediamine and -

Tetraamine with Π Acceptor, J. Mol. Liq., 320,  

114386 (2020). 

https://doi.org/10.1016/j.molliq.2020.114386. 

71. C. Verma, M. A. Quraishi, K. Kluza, M. 

Makowska-Janusik, L. O. Olasunkanmi and E. E. 

Ebenso, Corrosion Inhibition of Mild Steel in 1 M 

HCl by D-Glucose Derivatives of Dihydropyrido 

[2,3-D:6,5-D’] Dipyrimidine-2, 4, 6, 8(1H, 3H, 

5H, 7H)-Tetraone, Sci. Rep., 7, 44432 (2017).  

https://doi.org/10.1038/srep44432. 

72. G. Gao and C. Liang, Electrochemical and DFT 

Studies of -Amino-Alcohols as Corrosion 

Inhibitors for Brass, Electrochim. Acta, 52, 4554 

(2007). 

https://doi.org/10.1016/j.electacta.2006.12.058. 

73. M. Sahin, G. Gece, F. Karci and S. Bilgic, 

Experimental and Theoretical Study of The Effect 

of Some Heterocyclic Compounds on the 

Corrosion of Low Carbon Steel in 3.5% NaCl 

Medium, J. Appl. Electrochem., 38, 809 (2008). 

https://doi.org/10.1007/s10800-008-9517-3. 

74. M. A. Quraishi and R. Sardar, Hector Bases – a 

New Class of Heterocyclic Corrosion Inhibitors 

for Mild Steel in Acid Solutions, J. Appl. 

Electrochem., 33, 1163 (2003). 

https://doi.org/10.1023/B:JACH.0000003865.08

986.fb. 

75. M. Shahraki, M. Dehdab and S. Elmi, 

Comparative Theoretical and Experimental 

Studies on Corrosion Inhibition of Aluminum in 

Acidic Media by the Anti-Biotics Drugs, J. 

Taiwan Inst. Chem. Eng., 62, 313 (2016). 

https://doi.org/10.1016/j.jtice.2016.02.010. 

76. A. Singh, Y. Lin, M. Quraishi, L. Olasunkanmi, 

O. Fayemi, Y. Sasikumar, B. Ramaganthan, I. 

Bahadur, I. Obot, A. Adekunle, M. Kabanda and 

E. E. Ebenso, Porphyrins as Corrosion Inhibitors 

for N80 Steel in 3.5% NaCl Solution: 

Electrochemical, Quantum Chemical, QSAR and 

Monte Carlo Simulations Studies, Molecules, 20, 

15122 (2015). 

https://doi.org/10.3390/molecules200815122. 

77. G. Gece, The Use of Quantum Chemical Methods 

in Corrosion Inhibitor Studies, Corros. Sci., 50, 

2981 (2008). 

https://doi.org/10.1016/j.corsci.2008.08.043. 

78. J. N. Murrell, S. F. Kettle and J. M. Tedder, The 

Chemical Bond, John Wiley & Sons, Chichester, 

UK (1985). 

79. A. Ramalingam, N. Mustafa, W. J. Chng, M. 

Medimagh, S. Sambandam and N. Issaoui, 3-

Chloro-3-Methyl-2,6-Diarylpiperidin-4-Ones as 

Anti-Cancer Agents: Synthesis, Biological 

Evaluation, Molecular Docking, and in Silico 

ADMET Prediction, Biomolecules, 12(8), 1093 

(2022). https://doi.org/10.3390/biom12081093  

80. A. S. Kazachenko, N. Y. Vasilieva, O. Y. 

Fetisova, V. V. Sychev, E. V. Elsuf’ev, Y. N. 

Malyar, N. Issaoui, A. V. Miroshnikova, V. S. 

Borovkova, A. S. Kazachenko, Y. D. Berezhnaya, 

A. M. Skripnikov, D. V. Zimonin and V. A. Ionin, 

New Reactions of Betulin with Sulfamic Acid and 

Ammonium Sulfamate in the Presence of Solid 

Catalysts, Biomass Convers. Biorefin., 14, 4245 

(2024). https://doi.org/10.1007/s13399-022-

02587-x  

 

 

https://doi.org/10.1021/ja00005a072
https://doi.org/10.1016/j.molliq.2018.09.052
https://doi.org/10.1021/ar00029a004
https://doi.org/10.1073/pnas.83.22.8440
https://doi.org/10.1016/j.molliq.2020.114386
https://www.nature.com/articles/srep44432
https://www.nature.com/articles/srep44432
https://doi.org/10.1016/j.electacta.2006.12.058
https://doi.org/10.1007/s10800-008-9517-3
https://doi.org/10.1023/B:JACH.0000003865.08986.fb
https://doi.org/10.1023/B:JACH.0000003865.08986.fb
https://doi.org/10.1016/j.jtice.2016.02.010
https://doi.org/10.3390/molecules200815122
https://doi.org/10.1016/j.corsci.2008.08.043
https://doi.org/10.3390/biom12081093
https://doi.org/10.1007/s13399-022-02587-x
https://doi.org/10.1007/s13399-022-02587-x

	Results and discussion
	Conclusions
	References
	3. R. Hua, J. P. Doucet, M. Delamar and R. Zhang, QSAR Models for 2-Amino-6-Arylsulfonylbenzonitriles and Congeners HIV-1 Reverse Transcriptase Inhibitors Based on Linear and Nonlinear Regression Methods, Eur. J. Med. Chem., 44, 2158 (2009).  https://...
	7. R. Hu, F. Barbault, M. Delamar and R. Zhang, Receptor and Ligand-Based 3D-QSAR Study for a Series of Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors, Bioorg. Med. Chem., 17, 2400 (2009). https://doi.org/10.1016/j.bmc.2009.02.003.

